Проекты — Инвестиционный портал Москвы

Проекты - Инвестиционный портал Москвы Инвестиции

Технология решения экономических задач с применением финансовых функций excel

ТЕХНОЛОГИЯ РЕШЕНИЯ ЭКОНОМИЧЕСКИХ ЗАДАЧ С применением ФИНАНСОВЫХ ФУНКЦИЙ EXCEL

Назначение и форматы финансовых функций для анализа инвестиций

Формат Назначение
БЗРАСПИС
(первичное; план)
Рассчитывает будущее значение инвестиции после начисления сложных процентов при переменной процентной ставке.
БС (ставка; кпер; плт;
пс; тип[1])
Вычисляет будущую стоимость инвестиции (вклада) на основе периодических, равных по величине сумм платежей и постоянной процентной ставки.
ВСД (значения;
предположение)
Вычисляет внутреннюю ставку доходности для потоков денежных средств, представленных их численными, не обязательно равными по величине значениями (доходы – с плюсом, расходы – с минусом), осуществляемые в последовательные и одинаковые по продолжительности периоды.
КПЕР (ставка; плт; пс;
бс; тип)
Вычисляет общее количество периодов выплаты для инвестиции на основе периодических постоянных выплат и постоянной процентной ставки.
МВСД (значения;
ставка_финанс;
ставка_реинвест)
Возвращает модифицированную внутреннюю ставку доходности для ряда периодических денежных потоков (с учетом затрат на привлечение инвестиции и процентов, получаемых от реинвестирования денежных средств).
НОМИНАЛ
(эффективная_ставка; кол_пер)
Вычисляет номинальную годовую процентную ставку по эффективной ставке и количеству периодов в году, за которые начисляются сложные проценты.
ОБЩДОХОД (ставка;
кол_пер; нз; нач_период; кон_период; тип)
Возвращает кумулятивную (нарастающим итогом) сумму основных выплат по займу между двумя периодами.
ОБЩПЛАТ (ставка;
кол_пер; нз; нач_период; кон_период; тип)
Возвращает кумулятивную (нарастающим итогом) величину процентов в промежутке между двумя периодами выплат.
ОСПЛТ (ставка;
период; кпер; пс; бс; тип)
Возвращает величину платежа в погашение основной суммы по инвестиции за данный период на основе постоянства периодических платежей и постоянства процентной ставки.
ПЛТ (ставка; кпер; пс; бс; тип)Вычисляет сумму периодического платежа для аннуитета на основе постоянства сумм платежей и постоянства процентной ставки.
ПРОЦПЛАТ (ставка;
период; кпер; пс)
Вычисляет проценты, выплачиваемые за определенный инвестиционный период.
ПРПЛТ (ставка; период;
кпер; пс; бс; тип)
Возвращает сумму платежей процентов по инвестиции заданный период на основе постоянства сумм периодических платежей и постоянства процентной ставки.
ПС (ставка; кпер; плт;
бс; тип)
Рассчитывает приведенную к текущему моменту стоимость инвестиции, которая на настоящий момент равноценна ряду будущих выплат.
СТАВКА (кпер; плт; пс; бс;
тип; предположение)
Определяет процентную ставку по аннуитету за один период, используя итерационный метод.
ЧИСТВНДОХ (значения;
даты; предположение)
Вычисляет внутреннюю ставку доходности для графика нерегулярных денежных потоков переменной величины.
ЧИСТНЗ (ставка;
значения; даты)
Возвращает чистую приведенную стоимость нерегулярных переменных денежных потоков.
ЧПС (ставка; значения)Возвращает величину чистой приведенной стоимости инвестиции, используя ставку дисконтирования, а также стоимости будущих периодических выплат (отрицательные значения) и поступлений (положительные значения) в конце периода.
ЭФФЕКТ
(номинальная_ставка;
кол_пер)
Вычисляет эффективную (фактическую) годовую процентную ставку по номинальной ставке и количеству периодов в году, за которые начисляются сложные проценты.

Подробное описание аргументов финансовых функций приведено в таблице 4.2.

Таблица 4.2.

Задача 1.

Постановка задачи.

На банковский счет под 11,5% годовых внесли 37000 руб. Определить размер вклада по истечении 3 лет, если проценты начисляются каждые полгода.

Алгоритм решения задачи.

Поскольку необходимо рассчитать единую сумму вклада на основе постоянной процентной ставки, то используем функцию БС (ставка; кпер; плт; пс; тип). Опишем способы задания аргументов данной функции.

В связи с тем, что проценты начисляются каждые полгода, аргумент ставка равен 11,5%/2. Общее число периодов начисления равно 3*2 (аргумент кпер). Если решать данную задачу с точки зрения вкладчика, то аргумент пс (начальная стоимость вклада) равный 37 000 руб., задается в виде отрицательной величины (- 37 000), поскольку для вкладчика это отток его денежных средств (вложение средств). Если рассматривать решение данной задачи с точки зрения банка, то данный аргумент (пс) должен быть задан в виде положительной величины, т.к. означает поступление средств в банк.

Аргумент плт отсутствует, т.к. вклад не пополняется. Аргумент тип равен 0, т.к. в подобных операциях проценты начисляются в конце каждого периода (задается по умолчанию). Тогда к концу 3-го года на банковском счете имеем:

= БС (11,5%/2;3*2;;-37 000) = 51 746,86 руб., с точки зрения вкладчика это доход,

= БС (11,5%/2;3*2;;37 000) = — 51 746,86 руб., с точки зрения банка это расход, т.е. возврат денег банком вкладчику.

На практике, в зависимости от условий финансовой сделки проценты могут начисляться несколько раз в год, например, ежемесячно, ежеквартально и т.д. Если процент начисляется несколько раз в год, то необходимо определение общего числа периодов начисления процентов и ставки процента за период начисления. В таблице 4.3 приведены данные для наиболее распространенных методов внутригодового учета процентов.

Таблица 4.3.

Расчет данных для различных вариантов начисления процентов

Метод начисления процентов Общее число периодов начисления процентов Процентная ставка за период начисления, %
Ежегодный N K
Полугодовой N*2 K/2
Квартальный N*4 K/4
Месячный N*12 K/12
Ежедневный N*365 K/365

Этот же расчет можно выполнить по формуле:

Проекты - Инвестиционный портал Москвы (4.1),

где: Бс – будущая стоимость (значение) вклада;

Пс – текущая стоимость вклада;

Кпер – общее число периодов начисления процентов;

Ставка – процентная ставка по вкладу за период.

Подставив в формулу числовые данные, получим:

Проекты - Инвестиционный портал Москвы

Примечания.

1. При аналитических вычислениях в Excel с помощью функций, связанных с аннуитетом, – БЗРАСПИС, БС, ОБЩДОХОД, ОБЩПЛАТ, ОСПЛТ, ПЛТ, ПРПЛТ, ПС, СТАВКА, ЧИСТВНДОХ, ЧИСТНЗ – используется следующее основное уравнение:

Проекты - Инвестиционный портал Москвы

(4.2),

в котором наименования параметров Пс, Ставка, Кпер, Плт, Бс соответствуют описаниям из таблицы 4.2 (и, соответственно, одноименным встроенным функциям), а параметр Тип определяет обязательность выплаты платежей в начале периода (1) или выплату обычных платежей в конце периода (0).

2. Из уравнения (4.2) могут быть выражены значения бс, пс, ставка, кпер, плт через другие параметры. Эти выражения используются соответствующими функциями Excel.

3. Если ставка равна 0, вместо уравнения (4.2) используется уравнение:

Проекты - Инвестиционный портал Москвы (4.3)

4. Если формула (4.1) не предусматривает задание денежных потоков, идущих от клиента, со знаком минус, то в формулах (4.2) и (4.3) это учтено.

Нахождение решения задачи 1 по формуле (4.2) дает тот же результат. Иллюстрация решения приведена на рис. 4.1.

Проекты - Инвестиционный портал Москвы

Рис. 4.1. Фрагмент листа Excel с решением задачи о нахождении будущего размера вклада

Задача 2.

Постановка задачи.

Определить, сколько денег окажется на банковском счете, если ежегодно в течение 5 лет под 17% годовых вносится 20 тыс. руб. Взносы осуществляются в начале каждого года.

Алгоритм решения задачи.

Поскольку следует рассчитать будущую стоимость фиксированных периодических выплат на основе постоянной процентной ставки, то воспользуемся функцией БС со следующими аргументами:

= БС(17%;5;-20000;;1) = 164 136,96 руб.

Если бы взносы осуществлялись в конце каждого года, результат был бы:

= БС(17%;5;-20000) = 140 288 руб.

В рассмотренной функции не используется аргумент пс, т.к. первоначально на счете денег не было.

Решение задачи может быть найдено с использованием формулы:

Проекты - Инвестиционный портал Москвы

где: Бс – будущая стоимость потока фиксированных периодических платежей;

Плт – фиксированная периодическая сумма платежа;

Кпер – общее число периодов выплат;

Ставка – постоянная процентная ставка;

i – номер текущего периода выплаты платежа.

Результат аналитического вычисления:

Проекты - Инвестиционный портал Москвы

Задача 3.

Постановка задачи.

Достаточно ли положить на счет 85 000 руб. для приобретения через 5 лет легкового автомобиля стоимостью 160 000 руб.? Банк начисляет проценты ежеквартально, годовая ставка 12%.

Произвести расчеты при разных вариантах процентной ставки.

Алгоритм решения задачи.

Поскольку требуется найти будущее значение суммы вклада через 5 лет, для решения поставленной задачи воспользуемся функцией БС. Получим:

=БС(12%/4;5*4;;-85000; 0)= 153 519,45р.

Как видим, найденная сумма недостаточна для совершения покупки. Чтобы осуществить мечту, существует два варианта: первоначально положить на счет большую сумму или воспользоваться банком, где предусмотрена большая процентная ставка. Внесение дополнительных платежей рассматривать не будем.

1 вариант.

Для определения необходимой суммы исходные данные задачи представим в виде таблицы и воспользуемся средством Подбор параметра из меню команды Сервис.

Иллюстрация решения представлена на рис. 4.2.

Проекты - Инвестиционный портал Москвы

Рис. 4.2. Фрагмент окна Excel с заполненными полями подбора параметров

После подтверждения введенных данных в ячейке В7 установится значение 160 000,00р., а в ячейке B3 отобразится результат – 88 588,12р.

2 вариант.

В данном случае также можно применить средство Подбор параметра из меню команды Сервис, изменяя ячейку, в которой находится процентная ставка. Однако для анализа влияния процентной ставки на зависящую от нее формулу расчета будущей суммы вклада воспользуемся другим средством – Таблицей подстановки из меню Данные.

В дополнение к исходным данным задачи, представленным в виде таблицы, наметим контуры будущей таблицы подстановки: укажем наименования столбцов, в ячейки D9:D16 введем процентные ставки (входы в нашу таблицу подстановки будут размещаться слева в строках), а в ячейку Е8 введем формулу расчета будущего значения единой суммы вклада. Затем выполним необходимые действия по инициализации средства Таблица подстановки и внесения в соответствующее поле подстановки по строкам значения адреса ячейки с процентной ставкой.

Иллюстрация окна Excel после задания параметров для таблицы подстановки, а также контрольные значения искомых результатов представлены на рис. 4.3.

Проекты - Инвестиционный портал Москвы

Рис. 4.3. Фрагмент окна Excel с заполненными полями таблицы подстановки

После подтверждения в диалоговом окне заданных параметров таблицы подстановки в диапазоне ячеек Е9:Е16 автоматически появятся результаты, полностью совпадающие с контрольными значениями.

Из результатов следует, что годовые ставки менее 13% не обеспечивают рост вклада до требуемой величины, равной 160 000 р.

При ставке 13% значение вклада вырастет до 161 146,22р., а ставка 13,5% обеспечивает рост вклада до 165 093,27р.

Определение будущей стоимости на основе переменной процентной ставки

Задача 1.

Постановка задачи.

По облигации номиналом 50 000 руб., выпущенной на 6 лет, предусмотрен следующий порядок начисления процентов: в первый год – 10%, в следующие два года – 20%, в оставшиеся три года – 25%.

Определить будущую стоимость облигации с учетом переменной процентной ставки.

Алгоритм решения задачи.

Поскольку процентная ставка меняется со временем, но является постоянной на протяжении каждого из периодов одинаковой продолжительности, то для расчета будущего значения инвестиции по сложной процентной ставке следует воспользоваться функцией БЗРАСПИС (первичное; план).

Проекты - Инвестиционный портал Москвы Иллюстрация решения задачи представлена на рис. 4.4.

Рис. 4.4. Окно функции БЗРАСПИС с данными о будущей стоимости облигации

Результат решения задачи – 154 687,50 р. может быть найден и при явной записи функции БЗРАСПИС. Массив процентных ставок в этом случае следует ввести в фигурных скобках:

=БЗРАСПИС(50 000; {0,1; 0,2; 0,2; 0,25; 0,25; 0,25}) = 154687,50

Для вычислений будущей стоимости функция БЗРАСПИС использует следующую формулу:

Проекты - Инвестиционный портал Москвы (4.5),

где: Бзраспис – будущая стоимость инвестиции при переменной процентной ставке;

Пс – текущая стоимость инвестиции;

Кпер – общее число периодов;

Ставкаi – процентная ставка в i-й период.

Расчеты по указанной формуле дают тот же результат:

Проекты - Инвестиционный портал Москвы

Задача 2.

Постановка задачи.

По облигации, выпущенной на 6 лет, предусмотрен порядок начисления процентов, приведенный в задаче 1. Рассчитать номинал облигации, если известно, что ее будущая стоимость составила 154 687,50 руб.

Алгоритм решения задачи.

Для решения предложенной задачи воспользуемся аппаратом подбора параметра (из меню команды Сервис).

Проекты - Инвестиционный портал Москвы Пусть исходные данные задачи введены в соответствие с рис. 4.4: в ячейках В4:В9 набраны процентные ставки; ячейка В3 предназначена для хранения значения номинала облигации; в ячейку В10 введена формула =БЗРАСПИС(B3;B4:B9).

Инициируем процедуру подбора параметра (из меню команды Сервис) и заполним диалоговое окно в соответствие с данными, представленными на рис. 4.5.

После подтверждения ввода данных в результате подбора параметра в ячейке В3 получим значение номинала облигации – 50 000 р.

Задания для самостоятельной работы

1. В банк на депозит внесена сумма 30 тыс. руб. Срок депозита 2 года, годовая ставка – 12%. Начисление процентов производится ежеквартально. Определить величину депозита в конце срока.

2. Существует два варианта денежных вкладов по 50 тыс. руб. в течение трех лет: в начале каждого года под 19% годовых или в конце каждого года под 27% годовых. Определить наиболее предпочтительный вариант.

3. Два клиента банка в течение нескольких лет вносят одинаковые фиксированные денежные суммы под 14% годовых. Один клиент делает вклад в начале каждого квартала, другой – в конце каждого месяца. Определить размеры накопленных клиентами к концу пятого года сумм, если общая сумма взносов каждого из них за год равнялась 12 тыс. руб.

4. Определить величину вклада, если сумма размером 7 тыс. руб. помещена в банк под 11% годовых на 28 месяцев, а проценты начисляются ежеквартально.

5. По вкладу размером 3 тыс. руб. начисляется 13% годовых. Определить сумму вклада через 2 года, если проценты начисляются ежемесячно.

6. В начале каждого месяца на счет в банке вносится 1 тыс. руб. Определить накопленную за 3 года сумму вклада при ставке процента 13,5% годовых.

7. Банк принимает вклад на срок 3 месяца под 15% годовых или на 6 месяцев под 17% годовых. Как выгоднее вкладывать деньги на полгода: дважды на 3 месяца или один раз на 6 месяцев?

8. Выдан кредит в сумме 500 тыс. руб. на срок с 15 января по 15 марта текущего года под 15% годовых. Рассчитать сумму погасительного платежа.

9. Рассчитать будущую стоимость облигации номиналом 100 тыс. руб., выпущенной на 4 года, если предусмотрен следующий порядок начисления процентов: в первый год – 12,5%, в следующие два года – 14%, в последний год – 17% годовых.

10. Ожидается, что будущая стоимость инвестиции размером 150 тыс. руб. к концу четвертого года составит 300 тыс. руб. При этом за первый год доходность составит 15%, за второй – 17%, за четвертый – 23%. Рассчитать доходность инвестиции за третий год, используя аппарат подбора параметра.

11. Ставка банка по валютным вкладам на начало года составляет 10% годовых, начисляемых раз в квартал. Первоначальная сумма вклада 500 у.е. В течение года, в начале последующих кварталов, ожидается снижение ставки от первоначального размера на 2, 3 и 5 процентов соответственно. Определить величину вклада на начало следующего года.

12. Корпорация планирует ежеквартально в течение 8-ми лет делать отчисления по 2 000 руб. для создания фонда выкупа своих облигаций. Средства помещаются в банк под 10% годовых. Какая сумма будет накоплена к концу срока операции?

13. Клиент внес в банк вклад на сумму 5 тыс. руб. сроком на один год. Процентная ставка по вкладу в первом квартале составила 12% годовых, в середине второго квартала понизилась до 9%, в начале четвертого квартала снова возросла до 12% годовых. Какую сумму клиент получит в конце года?

14. Если Вы занимаете 30 000 рублей на два года под 8% годовых, то сколько всего денег Вы должны возвратить?

15. Если начальный баланс на счете 6 000 рублей и ежемесячный взнос 500 рублей (в конце каждого месяца), то сколько можно накопить за три года при ставке 0,75% в месяц?

16. Имеется возможность приобретения недвижимости, выплатив строго фиксированную сумму 1 500 000 руб. равномерными авансовыми месячными платежами по 15 000 руб. в течение некоторого периода. В дальнейшем, через 5 лет, недвижимость предполагается продать. Какой на этот момент должна быть ее цена, если планируется за весь срок получить доход, равный 1% в месяц?

17. Финансовая компания создает фонд для погашения обязательств путем помещения в банк суммы в 60 000 руб., с последующим ежегодным пополнением суммами по 10 000 руб. Ставка по депозиту равна 12% годовых. Какова будет величина фонда к концу 6-го года?

Определение текущей стоимости

Часто в расчетах используется понятие текущей стоимости будущих доходов и расходов, связанное с концепцией временной стоимости денег. Согласно этой концепции платежи, осуществленные в различные моменты времени, можно сопоставлять (сравнивать, складывать, вычитать) лишь после приведения их к одному временному моменту.

Текущая стоимость получается как результат приведения будущих доходов и расходов к начальному периоду времени. Функции Excel, относящиеся к данной теме – ПС (ставка; кпер; плт; бс; тип), ЧПС (ставка; значения), ЧИСТНЗ (ставка; значения; даты).

Функция ПС используется, если денежный поток представлен в виде серии равных платежей, осуществляемых через равные промежутки времени.

Функция ЧПС применяется, если денежные потоки представлены в виде платежей произвольной величины, осуществляемые через равные промежутки времени.

Функция ЧИСТНЗ применяется, если денежные потоки представлены в виде платежей произвольной величины, осуществляемых за любые промежутки времени.

Задача 1.

Постановка задачи.

Фирме требуется 500 тыс. руб. через три года. Определить, какую сумму необходимо внести фирме сейчас, чтобы к концу третьего года вклад увеличился до 500 тыс. руб., если процентная ставка составляет 12% годовых.

Алгоритм решения задачи.

Для расчета суммы текущего вклада зададим исходные данные в виде таблицы. При вводе формулы вызовем функцию ПС и в полях ее панели укажем адреса требуемых параметров (рис. 4.6). В результате вычислений получим отрицательное значение, так как указанную сумму фирме потребуется внести.

При непосредственном вводе данных получается то же значение вклада:

= ПС (12%; 3; ; 500000) = — 355 890,12 руб.

Проекты - Инвестиционный портал Москвы

Рис. 4.6. Фрагмент окна Excel с панелью функции ПС

Напомним, что расчет текущей стоимости с помощью функции ПС является обратным к определению будущей стоимости с помощью функции БС (см. формулы (4.1) и (4.2)). Расчет производится путем дисконтирования по ставке сложных процентов, используя формулу:

Проекты - Инвестиционный портал Москвы (4.6)

Формула (4.6) дает аналогичный результат решения задачи, но, базируясь на формуле (4.1), не учитывает знак минус для денежных потоков от клиента:

Проекты - Инвестиционный портал Москвы

Вычисления на основе уравнения (4.2) дают полностью правильный результат.

Задача 2.

Постановка задачи.

Клиент заключает с банком договор о выплате ему в течение 5 лет ежегодной ренты в размере 5 тыс. руб. в конце каждого года. Какую сумму необходимо внести клиенту в начале первого года, чтобы обеспечить эту ренту, исходя из годовой процентной ставки 20%?

Алгоритм решения задачи.

Для расчета настоящего объема предполагаемой инвестиции на основе постоянных периодических выплат в размере 5 тыс. руб. в течение 5 лет используется функция ПС. Подставив исходные данные в заданную функцию, получим:

= ПС( 20%; 5; 5000; 0; 0) = -14 953,06 руб.

Знак «минус» означает, что клиент должен вложить 14953,06 руб., чтобы потом получить выплаты.

Расчет текущей стоимости серии будущих постоянных периодических выплат, производимых в конце периода (обычные платежи) и дисконтированных нормой дохода ставка, ведется по формуле:

Проекты - Инвестиционный портал Москвы (4.7),

где: Пс – текущая стоимость серии фиксированных периодических платежей;

Плт – фиксированная периодическая сумма платежа;

Кпер – общее число периодов выплат (поступлений);

Ставка – постоянная процентная ставка.

Вычисления по формуле (4.7) дают то же значение (без учета знака):

Проекты - Инвестиционный портал Москвы

Задача 3.

Постановка задачи.

Пусть инвестиции в проект к концу первого года его реализации составят 20 000 руб. В последующие четыре года ожидаются годовые доходы по проекту: 6 000 руб., 8 200 руб., 12 600 руб., 18 800 руб.

Рассчитать чистую текущую стоимость проекта к началу первого года, если процентная ставка составляет 10% годовых.

Алгоритм решения задачи.

Чистая текущая стоимость проекта для периодических денежных потоков переменной величины рассчитывается с помощью функции ЧПС.

Так как по условию задачи инвестиция в сумме 20 000 руб. вносится к концу первого периода, то это значение следует включить в список аргументов функции ЧПС со знаком «минус» (инвестиционный денежный поток движется «от нас»). Остальные денежные потоки представляют собой доходы, поэтому при вычислениях укажем их со знаком «плюс».

Иллюстрация решения задачи представлена на рис. 4.7.

Чистая текущая стоимость проекта к началу первого года составляет:

= ЧПС (10%; -20000; 6000; 8200; 12600; 18800) = 13 216,93 руб.

Данный результат представляет собой чистую прибыль от вложения 20 тыс. руб. в проект с учетом покрытия всех расходов.

Проекты - Инвестиционный портал Москвы

Рис. 4.7. Фрагмент окна Excel с панелью функции ЧПС

При расчете чистой приведенной стоимости инвестиций с помощью функции ЧПС учитываются периодические платежи переменной величины как суммы ожидаемых расходов и доходов в каждый из периодов, дисконтированные нормой процентной ставки, с использованием следующей формулы:

Проекты - Инвестиционный портал Москвы (4.8),

где: ЧПС – чистая текущая стоимость периодических выплат и поступлений;

Значениеi – суммарный размер i-го денежного потока на конец периода (поступления – со знаком «плюс», выплаты – со знаком «минус»);

Ставка – норма дисконтирования за один период;

n – число периодов движения денежных потоков (суммарное количество выплат и поступлений);

i – номер периода денежного потока.

Аналитический расчет задачи дает аналогичный результат:

Проекты - Инвестиционный портал Москвы

Задача 4.

Постановка задачи.

Инвестор с целью инвестирования рассматривает 2 проекта, рассчитанных на 5 лет. Проекты характеризуются следующими данными:

· по 1-му проекту – начальные инвестиции составляют 550 тыс. руб., ожидаемые доходы за 5 лет соответственно 100, 190, 270, 300 и 350 тыс. руб.;

· по 2-му проекту – начальные инвестиции составляют 650 тыс. руб., ожидаемые доходы за 5 лет соответственно 150, 230, 470, 180 и 320 тыс. руб.

Определить, какой проект является наиболее привлекательным для инвестора при ставке банковского процента – 15% годовых.

Алгоритм решения задачи.

Оценку привлекательности проектов выполним с помощью показателя чистой текущей стоимости (функции ЧПС).

Поскольку оба проекта предусматривают начальные инвестиции, вычтем их из результата, полученного с помощью функции ЧПС. (Начальные инвестиции по проекту не нужно дисконтировать, так как они являются предварительными, уже совершенными к настоящему моменту времени).

Для облегчения анализа полученного решения исходные данные задачи представим в виде таблицы и в соответствующие ячейки введем значения формул с функциями ЧПС (рис. 4.8). В результате вычислений получим, что чистая приведенная стоимость инвестиций во второй проект почти на 22 тыс. руб. выше, чем в первый.

Проекты - Инвестиционный портал Москвы

Проекты - Инвестиционный портал Москвы

Непосредственное задание параметров в формулах расчета, как и вычисления с использованием формулы (4.8), дают те же результаты.

Для первого проекта:

= ЧПС (15%; 100000; 190000; 270000; 300000; 350000) – 550000 = 203 691,03р.

Проекты - Инвестиционный портал Москвы

Для второго проекта:

= ЧПС (15%; 150000; 230000; 470000; 180000; 320000) – 650000 = 225 392,59р.

Проекты - Инвестиционный портал Москвы

Таким образом, второй проект является для инвестора более привлекательным.

В некоторой степени функции ПС и ЧПС похожи. Сравнивая их, можно сделать следующие выводы:

1) в функции ПС периодические выплаты предполагаются одинаковыми, а в функции ЧПС они могут быть различными;

2) в функции ПС платежи и поступления происходят как в конце, так и в начале периода, а в функции ЧПС предполагается, что все выплаты производятся равномерно и всегда в конце периода.

Из последнего вывода следует, что если денежный взнос осуществляется в начале первого периода, то его значение следует исключить из аргументов функции ЧПС и добавить (вычесть, если это затраты) к результату функции ЧПС. Если же взнос приходится на конец первого периода, то его следует задать в виде отрицательного первого аргумента массива значений функции ЧПС.

Примечание.

Нельзя непосредственно оценивать эффективность, например, с помощью функции ЧПС, нескольких инвестиционных проектов, имеющих разную продолжительность. Предполагая, что допускается реинвестирование, необходимо свести полученные результаты чистой текущей стоимости по каждому из них к единому по продолжительности периоду. С этой целью можно воспользоваться специальными методами.

Метод цепного повтора предполагает оценку эффективности проектов в рамках общего одинакового срока их действия. Находится наименьшее общее кратное продолжительности проектов и рассчитывается, сколько раз каждый из них должен повториться. Затем определяется с учетом повторов и реинвестирования чистая приведенная стоимость каждого из проектов, которая и сравнивается. Большему значению соответствует более привлекательный проект.

Про бизнес:  Как сохранить сбережения от инфляции: советы Уоррена Баффета :: Новости :: РБК Инвестиции

Суммарная чистая приведенная стоимость повторяющегося потока для каждого из проектов находится по формуле:

Проекты - Инвестиционный портал Москвы(4.9),

где: ЧПС(n) – чистая приведенная эффективность исходного проекта, найденная с учетом предварительных инвестиций;

n – длительность исходного проекта;

i – число повторов исходного проекта;

Ставка – норма дисконтирования за один период.

Метод бесконечного цепного повтора предполагает, что каждый из проектов может быть реализован неограниченное число раз.

Проекты - Инвестиционный портал Москвы(4.10)

Задача 5.

Постановка задачи.

Сравнить инвестиционную привлекательность двух проектов. Цена капитала составляет 10%. Предварительные инвестиции в первый проект составляют 100 млн. руб., во второй – 105 млн. руб. Продолжительность первого проекта – 2 года; доходы по годам – 50 и 70 млн. руб. соответственно. Продолжительность второго проекта – 3 года; доходы по годам – 34, 40 и 60 млн. руб. соответственно.

Алгоритм решения задачи.

Для решения задачи предварительно рассчитаем чистую приведенную стоимость проектов при их однократном выполнении, воспользовавшись функцией ЧПС и вычтя предварительные инвестиции. Затем, принимая во внимание разную продолжительность проектов, рассчитаем значения эффективности проектов по формулам (4.9) и (4.10).

При однократном выполнении проектов предпочтительным выходит второй проект (ЧПС1 = 3,306; ЧПС2 = 4,046). Но такой вывод преждевременный (рис. 4.9).

Расчет эффективности проектов за 6 лет, а также при их бесконечном повторении дает результат полностью противоположный – более привлекательным является первый проект:

ЧПС1(2,3) = 8,296 ЧПС2(3,2) = 7,086

ЧПС1(2,∞) = 19,048 ЧПС2(3, ∞) = 16,269

Задача 6.

Постановка задачи.

Определить чистую текущую стоимость по проекту на 5.04.2005 г. при ставке дисконтирования 8%, если затраты по нему на 5.08.2005 г. составят 90 млн. руб., а ожидаемые доходы в течение следующих месяцев будут:

10 млн. руб. на 10.01.2006 г.;

20 млн. руб. на 1.03.2006 г.;

30 млн. руб. на 15.04.2006 г.;

40 млн. руб. на 25.07.2006 г.

Проекты - Инвестиционный портал Москвы

Рис. 4.9. Иллюстрация оценки эффективности инвестиционных проектов разной продолжительности

Алгоритм решения задачи.

Поскольку в данном случае имеем дело с нерегулярными переменными расходами и доходами, для расчета чистой текущей стоимости по проекту на 5.04.2005 г. необходимо применить функцию ЧИСТНЗ.

Расчет чистой текущей стоимости нерегулярных переменных расходов и доходов с помощью функции ЧИСТНЗ осуществляется по формуле:

Проекты - Инвестиционный портал Москвы (4.11),

где: Чистнз – чистая текущая стоимость нерегулярных переменных выплат и поступлений;

Ставка – норма дисконтирования;

d1 – дата 0-й операции (начальная дата);

di дата i-й операции;

Значениеiсуммарное значение i–й операции;

n – количество выплат и поступлений.

Для нахождения решения задачи предварительно построим таблицу с исходными данными. Рассчитаем рядом в столбце число дней, прошедших от начальной даты до соответствующей выплаты. Затем найдем требуемый результат – с помощью функции ЧИСТНЗ и по формуле (4.11). Получим значение – 4 267 559 руб. 31 коп. Иллюстрация решения приведена на рис. 4.10.

Непосредственный ввод параметров в ЧИСТНЗ дает тот же результат:

=ЧИСТНЗ (8%;{0;-90;10;20;30;40}; B4:B8) = 4,26755931 млн. руб.

Вычисление решения задачи по формуле (4.11):

Проекты - Инвестиционный портал Москвы

Примечания.

1. При явной форме записи функции ЧИСТНЗ нельзя непосредственно указывать в каком бы то ни было допустимом формате массив дат в качестве ее параметров. Обязательно следует ссылаться на ячейки, где эти даты приведены.

2. Аналитические вычисления по формулам следует выполнять на листе Excel (а не на калькуляторе).

Проекты - Инвестиционный портал Москвы

Рис. 4.10. Иллюстрация примера использования функции ЧИСТНЗ

Задания для самостоятельной работы

Показатели Проект 1 Проект 2
Инвестиции
Доходы:    
1 год
2 год
3 год

1. Определить, какой из двух представленных проектов является наиболее привлекательным для инвестора. Ставка банковского процента составляет 13% годовых. Другие данные о проектах приведены в таблице.

2. Определить чистую текущую стоимость проекта, если ставка дисконтирования равна 12%. Проект требует начальных инвестиций в размере 5 млн. руб. Предполагается, что в конце 1 года убыток составит 900 тыс. руб., а в следующие 3 года ожидается доход в размере: 1 500 тыс. руб., 3 200 тыс. руб. и 3 800 тыс. руб. соответственно.

Рассчитать также чистую текущую стоимость проекта при условии, что убыток в конце 1 года будет 1 100 тыс. руб.

3. Дать заключение по инвестиционному проекту для 5-ти регионов, если известно, что:

· проект рассчитан на 5 лет;

· ставка дисконтирования по 1-му региону составляет 5%, по 2-му – 6%, по 3-му – 7%, по 4-му – 8%, по 5-му – 9%.

· Другие данные о проекте приведены в таблице.

Указания.

Задачу следует решать, используя средство Таблица подстановки из меню команды Данные. Результаты представить в графическом виде.

4. В инвестиционную компанию для рассмотрения поступили два различных по продолжительности инвестиционных проекта. Предполагаемые данные о проектах приведены в таблице. Необходимо:

· сравнить проекты и выбрать наиболее эффективный из них;

· проанализировать проекты при одинаковых объемах инвестируемых средств.

Проект 1 Проект 2
Ставка дисконтирования 9% Ставка дисконтирования 11%
Объем инвестиций 120 тыс. руб. Объем инвестиций 100 тыс. руб.
Годы: Денежный поток (тыс. руб.) Годы: Денежный поток (тыс. руб.)
   
   

5. Рассматриваются два варианта покупки недвижимости. Первый вариант предполагает единовременную оплату в размере 700 тыс. руб. Второй вариант рассчитан на ежемесячную оплату по 9 тыс. руб. в течение 13 лет.

· Определить, какой вариант является более выгодным, если ставка процента равна: а) 10% годовых; б) 13% годовых.

· Рассчитать сумму ежемесячных взносов при ставке 10% годовых, чтобы второй вариант являлся более предпочтительным.

6. Определить текущую стоимость обязательных ежеквартальных платежей размером 80 тыс. руб. в течение 7 лет, если процентная ставка составляет 15% годовых.

7. Рассчитать суммы, которые необходимо положить на депозит для того, чтобы через 6 лет получить 10 млн. руб. при различных вариантах начисления процентов: ежемесячном, ежеквартальном, полугодовом и годовом. Процентная ставка – 11% годовых.

8. Предприниматель получил в банке кредит под 12% годовых. Какова текущая стоимость кредита, если предприниматель должен в течение 7 лет перечислять в банк по 253 000 руб. ежегодно?

9. Рассчитать чистую текущую стоимость проекта, если:

· к концу первого года его инвестиции составят 34 тыс. руб., а ожидаемые доходы в последующие годы соответственно будут: 5 тыс. руб., 17 тыс. руб. и 25 тыс. руб.; годовая учетная ставка – 12%;

· решить задачу с теми же условиями, но с учетом предварительной инвестиции в проект 10 тыс. руб.;

· проанализировать получаемую чистую текущую стоимость проекта при различных первоначальных объемах инвестиций и разных

§

1.1.1. Обзор ключевых категорий и положений

Количественный финансовый анализ предполагает использование моделей и методов расчета финансовых показателей. Условно методы финансово-экономических расчетов можно разделить на две части: базовые и прикладные.

К базовым методам относятся:

1) простые и сложные проценты как основа операций, связанных с наращением или дисконтированием платежей;

2) расчет потоков платежей применительно к различным видам финансовых рент.

К прикладным методам финансовых расчетов относятся:

1) планирование и оценка эффективности финансово-кредитных операций;

2) расчет страховых аннуитетов;

3) планирование погашения долгосрочной задолженности;

4) планирование погашения ипотечных ссуд и потребительских кредитов;

5) финансовые расчеты по ценным бумагам;

6) лизинговые, факторинговые и форфейтинговые банковские операции;

7) планирование и анализ инвестиционных проектов и др.

При проведении любых финансово-экономических расчетов учитывается принцип временной ценности денег (time value of money), который предполагает, что сумма, полученная сегодня, больше той же суммы, полученной завтра. Из данного принципа следует необходимость учета фактора времени при проведении долгосрочных финансовых операций и некорректность суммирования денежных величин, относящихся к разным периодам времени. Это явление широко известно в финансовом мире и обусловлено рядом причин:

— любая денежная сумма, имеющаяся в наличии, в условиях рынка может быть инвестирована, и через некоторое время принести доход;

— покупательная способность денег даже при небольшой инфляции со временем снижается.

Фактор времени учитывается с помощью методов наращения и дисконтирования, в основу которых положена техника процентных вычислений. С помощью этих методов осуществляется приведение денежных сумм, относящихся к различным временным периодам, к требуемому моменту времени в настоящем или будущем. При этом основой для количественного описания изменения стоимости денежных сумм во времени является теория процентных ставок.

К основным понятиям финансово-экономических расчетов относятся:

процент – абсолютная величина дохода от предоставления денег в кредит в любой форме;

процентная ставка – относительная величина дохода за фиксированный интервал времени, измеряемая в процентах или в виде дроби;

период начисления – интервал времени, к которому приурочена процентная ставка;

капитализация процентов – присоединение начисленных процентов к основной сумме;

наращение – процесс увеличения первоначальной суммы в результате начисления процентов;

дисконтирование – процесс приведения стоимости будущей суммы денег к текущему моменту времени (операция, обратная наращению).

Поясним экономический смысл отдельных понятий. Так, процентная ставка используется в качестве измерителя уровня (нормы) доходности производимых операций и определяется как отношение полученной прибыли к величине вложенных средств. Наращение позволяет в результате проведения финансовой операции определить величину, которая будет или может быть получена из первоначальной (текущей) суммы через некоторый промежуток времени. Дисконтирование представляет собой процесс нахождения величины на заданный момент времени по ее известному или предполагаемому значению в будущем.

В финансовых расчетах с процентами могут использоваться разные способы начисления процентов, следовательно, различные виды процентных ставок.

1) В зависимости от базы начисления процентов различают простые и сложные проценты.

Простые проценты используются, как правило, в краткосрочных финансовых операциях, срок проведения которых меньше года. Базой для исчисления процентов за каждый период в этом случае служит исходная сумма сделки.

Сложные проценты применяются в долгосрочных финансовых операциях со сроком проведения более одного года. При этом база для исчисления процентов за период включает в себя как исходную сумму сделки, так и сумму уже накопленных к этому времени процентов.

Наращение и дисконтирование осуществляется по формулам:

по ставке простых процентов по ставке сложных процентов
FV = PV(1 r * n) FV = PV(1 r )n
PV = FV/(1 r * n) PV = FV/(1 r )n
где FV(future value) – будущая величина, PV(present value) – текущая сумма,
r (interest rate) – ставка процентов, n – число периодов

2) Исходя из принципов расчета, различают ставку наращения (декурсивная ставка) и учетную ставку (антисипативная ставка).

3) По постоянству значения процентной ставки в течение действия договора ставки бывают фиксированные и плавающие.

Проведение практически любой финансовой операции порождает движение денежных средств. Такое движение может характеризоваться возникновением отдельных разовых платежей или множеством распределенных во времени выплат и поступлений, т.е. рассматривается поток платежей или денежный поток (cash flow).

Денежный поток – последовательность распределенных во времени платежей. Любая финансовая операция предполагает наличие двух потоков платежей: входящего — поступление (доходы) и исходящего — выплаты (расходы, вложения). В финансовом анализе эти потоки обычно заменяют одним двусторонним потоком платежей, где поступление денег считаются положительными величинами, а выплаты — отрицательными.

Простейший (элементарный) денежный поток состоит из одной выплаты и последующего поступления, либо разового поступления с последующей выплатой, разделенных определенными периодами времени (например, год, квартал, месяц и др.). Примерами финансовых операций с такими потоками платежей являются срочные депозиты, единовременные ссуды, операции с некоторыми видами ценных бумаг и др.

Потоки платежей по периодичности протекания делятся на регулярные и нерегулярные.

Регулярным потоком платежей называются платежи, у которых все выплаты направлены в одну сторону (например, поступления), а интервалы между платежами одинаковы.

Нерегулярным потоком платежей называются платежи, у которых часть выплат являются положительными величинами (поступления), а другая часть – отрицательными величинами (выплаты). Интервалы между платежами в этом случае могут быть не равны друг другу.

Наиболее простым примером регулярного потока платежей является финансовая рента. Финансовая рента или аннуитет (от annuity — ежегодный) определяется как поток платежей, все члены которого положительны и поступают через одинаковые интервалы времени.

Финансовая рента характеризуется: членом ренты, периодом ренты, сроком ренты и процентной ставкой.

Размер отдельного платежа называют членом ренты.

Интервал времени между двумя последовательными платежами является периодом ренты.

Ренты можно классифицировать по различным признакам, например, по количеству выплат члена ренты в течение года различают годовые и n-срочные (n раз в год) ренты.

По типу капитализации процентов ренты подразделяются на ренты с ежегодным начислением, с начислением m раз в год и с непрерывным начислением. При этом момент начисления процентов может не совпадать с моментом выплаты по ренте.

По величине членов ренты делятся на постоянные (с равными членами) и переменные.

По вероятности выплаты отдельного платежа ренты делятся на верные и условные. Верные ренты подлежат обязательной выплате, например при погашении кредита. Выплата условной ренты ставится в зависимость от наступления некоторого случайного события, например, страховые выплаты, выплаты пенсий и др.

По количеству членов различают ренты с конечным числом членов, ограниченные по срокам, и вечные, с бесконечным числом членов.

По срокам начала действия ренты и наступления какого-либо события различают немедленные и отложенные ренты.

По моменту выплаты платежей ренты подразделяются на обычные и приведенные.

Если платежи осуществляются в конце определенного периода времени (месяца, квартала, года и т.п.), то такие ренты называются постнумерандо или обычная рента (ordinary annuity).

Если выплата производится в начале каждого периода, то рента называется пренумерандо или приведенная рента (annuity due).

1.1.2. Финансовые функции для анализа инвестиций

Среди полного перечня финансовых функций Microsoft Excel, непосредственно предназначенных для финансовых расчетов, выделяется группа функций, используемая для анализа инвестиций и расчета операций по кредитам, ссудам и займам (табл. 4.1).

Таблица 4.1.

§

Аргумент Назначение аргумента
Даты
(дата1, …,датаN)
Расписание дат платежей, соответствующее ряду денежных потоков.
Значения
(сумма1, …, сумма N)
Ряд денежных потоков – выплат и поступлений (соответственно – отрицательные значения и положительные значения), соответствующий графику платежей.
Кол_перОбщее количество периодов выплат.
Кон_периодНомер последнего периода, включенного в вычисления.
КперОбщее число периодов платежей по аннуитету (функция КПЕР).
Нач_периодНомер первого периода, включенного в вычисления.
Номинальная_ставкаНоминальная годовая процентная ставка (функция Номинал)
Первичное
(нз, инвестиция)
Стоимость инвестиции на текущий момент.
Первый_периодДата окончания первого периода.
ПериодПериод, для которого определяется прибыль (выплата); находится в интервале от 1 до Кпер.
ПланМассив применяемых процентных ставок.
ПлтФиксированная выплата, производимая в каждый период (функция ПЛТ).
ПредположениеПрогнозная величина процентной ставки (по умолчанию – 0,1%).
ПсПриведенная к настоящему моменту стоимость инвестиции, начальное значение вклада (функция ПС).
СтавкаПроцентная ставка за период (функция Ставка).
Ставка_реинвестСтавка процента, получаемого на денежные потоки при их реинвестировании.
Ставка_финансСтавка процента, выплачиваемого за деньги, используемые в денежных потоках.
ТипКоэффициент, определяющий время выплаты: 0 – в конце периода (по умолчанию), 1 – в начале периода.
Эффективная_ставкаФактическая годовая процентная ставка (функция Эффект)

Рассмотрим функции Excel для расчета операций по кредитам, ссудам и займам. Эта группа функций обеспечивает решение следующих задач:

· определение наращенной суммы (будущей стоимости);

· определение начального значения (текущей стоимости);

· определение срока платежа и процентной ставки;

· расчет периодических платежей, связанных с погашением займов.

Отметим, что перед решением указанных задач следует ответить на два вопроса:

1. Кто является владельцем денежных средств? Например, в простой задаче накопления — вкладчик или банк? В задаче займа — должник или кредитор? При вычислении стоимости ряда будущих выплат — покупатель (выплата за приобретенный товар) или продавец (получение выплат за проданный товар)?

2. Как поступают денежные средства? Если денежные средства поступают к владельцу, то они имеют положительное значение, если уходят от владельца, то отрицательное.

Ответив на заданные вопросы, можно использовать финансовые функции Excel для проведения эффективных финансовых расчетов и правильно интерпретировать возвращаемые результаты.

Определение будущей стоимости на основе постоянной процентной ставки

Задача 1.

Постановка задачи.

На банковский счет под 11,5% годовых внесли 37000 руб. Определить размер вклада по истечении 3 лет, если проценты начисляются каждые полгода.

Алгоритм решения задачи.

Поскольку необходимо рассчитать единую сумму вклада на основе постоянной процентной ставки, то используем функцию БС (ставка; кпер; плт; пс; тип). Опишем способы задания аргументов данной функции.

В связи с тем, что проценты начисляются каждые полгода, аргумент ставка равен 11,5%/2. Общее число периодов начисления равно 3*2 (аргумент кпер). Если решать данную задачу с точки зрения вкладчика, то аргумент пс (начальная стоимость вклада) равный 37 000 руб., задается в виде отрицательной величины (- 37 000), поскольку для вкладчика это отток его денежных средств (вложение средств). Если рассматривать решение данной задачи с точки зрения банка, то данный аргумент (пс) должен быть задан в виде положительной величины, т.к. означает поступление средств в банк.

Аргумент плт отсутствует, т.к. вклад не пополняется. Аргумент тип равен 0, т.к. в подобных операциях проценты начисляются в конце каждого периода (задается по умолчанию). Тогда к концу 3-го года на банковском счете имеем:

= БС (11,5%/2;3*2;;-37 000) = 51 746,86 руб., с точки зрения вкладчика это доход,

= БС (11,5%/2;3*2;;37 000) = — 51 746,86 руб., с точки зрения банка это расход, т.е. возврат денег банком вкладчику.

На практике, в зависимости от условий финансовой сделки проценты могут начисляться несколько раз в год, например, ежемесячно, ежеквартально и т.д. Если процент начисляется несколько раз в год, то необходимо определение общего числа периодов начисления процентов и ставки процента за период начисления. В таблице 4.3 приведены данные для наиболее распространенных методов внутригодового учета процентов.

Таблица 4.3.

Расчет данных для различных вариантов начисления процентов

Метод начисления процентов Общее число периодов начисления процентов Процентная ставка за период начисления, %
Ежегодный N K
Полугодовой N*2 K/2
Квартальный N*4 K/4
Месячный N*12 K/12
Ежедневный N*365 K/365

Этот же расчет можно выполнить по формуле:

Проекты - Инвестиционный портал Москвы (4.1),

где: Бс – будущая стоимость (значение) вклада;

Пс – текущая стоимость вклада;

Кпер – общее число периодов начисления процентов;

Ставка – процентная ставка по вкладу за период.

Подставив в формулу числовые данные, получим:

Проекты - Инвестиционный портал Москвы

Примечания.

1. При аналитических вычислениях в Excel с помощью функций, связанных с аннуитетом, – БЗРАСПИС, БС, ОБЩДОХОД, ОБЩПЛАТ, ОСПЛТ, ПЛТ, ПРПЛТ, ПС, СТАВКА, ЧИСТВНДОХ, ЧИСТНЗ – используется следующее основное уравнение:

Проекты - Инвестиционный портал Москвы

(4.2),

в котором наименования параметров Пс, Ставка, Кпер, Плт, Бс соответствуют описаниям из таблицы 4.2 (и, соответственно, одноименным встроенным функциям), а параметр Тип определяет обязательность выплаты платежей в начале периода (1) или выплату обычных платежей в конце периода (0).

2. Из уравнения (4.2) могут быть выражены значения бс, пс, ставка, кпер, плт через другие параметры. Эти выражения используются соответствующими функциями Excel.

3. Если ставка равна 0, вместо уравнения (4.2) используется уравнение:

Проекты - Инвестиционный портал Москвы (4.3)

4. Если формула (4.1) не предусматривает задание денежных потоков, идущих от клиента, со знаком минус, то в формулах (4.2) и (4.3) это учтено.

Нахождение решения задачи 1 по формуле (4.2) дает тот же результат. Иллюстрация решения приведена на рис. 4.1.

Проекты - Инвестиционный портал Москвы

Рис. 4.1. Фрагмент листа Excel с решением задачи о нахождении будущего размера вклада

Задача 2.

Постановка задачи.

Определить, сколько денег окажется на банковском счете, если ежегодно в течение 5 лет под 17% годовых вносится 20 тыс. руб. Взносы осуществляются в начале каждого года.

Алгоритм решения задачи.

Поскольку следует рассчитать будущую стоимость фиксированных периодических выплат на основе постоянной процентной ставки, то воспользуемся функцией БС со следующими аргументами:

= БС(17%;5;-20000;;1) = 164 136,96 руб.

Если бы взносы осуществлялись в конце каждого года, результат был бы:

= БС(17%;5;-20000) = 140 288 руб.

В рассмотренной функции не используется аргумент пс, т.к. первоначально на счете денег не было.

Решение задачи может быть найдено с использованием формулы:

Проекты - Инвестиционный портал Москвы

где: Бс – будущая стоимость потока фиксированных периодических платежей;

Плт – фиксированная периодическая сумма платежа;

Кпер – общее число периодов выплат;

Ставка – постоянная процентная ставка;

i – номер текущего периода выплаты платежа.

Результат аналитического вычисления:

Проекты - Инвестиционный портал Москвы

Задача 3.

Постановка задачи.

Достаточно ли положить на счет 85 000 руб. для приобретения через 5 лет легкового автомобиля стоимостью 160 000 руб.? Банк начисляет проценты ежеквартально, годовая ставка 12%.

Произвести расчеты при разных вариантах процентной ставки.

Алгоритм решения задачи.

Поскольку требуется найти будущее значение суммы вклада через 5 лет, для решения поставленной задачи воспользуемся функцией БС. Получим:

=БС(12%/4;5*4;;-85000; 0)= 153 519,45р.

Как видим, найденная сумма недостаточна для совершения покупки. Чтобы осуществить мечту, существует два варианта: первоначально положить на счет большую сумму или воспользоваться банком, где предусмотрена большая процентная ставка. Внесение дополнительных платежей рассматривать не будем.

1 вариант.

Для определения необходимой суммы исходные данные задачи представим в виде таблицы и воспользуемся средством Подбор параметра из меню команды Сервис.

Иллюстрация решения представлена на рис. 4.2.

Проекты - Инвестиционный портал Москвы

Рис. 4.2. Фрагмент окна Excel с заполненными полями подбора параметров

После подтверждения введенных данных в ячейке В7 установится значение 160 000,00р., а в ячейке B3 отобразится результат – 88 588,12р.

2 вариант.

В данном случае также можно применить средство Подбор параметра из меню команды Сервис, изменяя ячейку, в которой находится процентная ставка. Однако для анализа влияния процентной ставки на зависящую от нее формулу расчета будущей суммы вклада воспользуемся другим средством – Таблицей подстановки из меню Данные.

В дополнение к исходным данным задачи, представленным в виде таблицы, наметим контуры будущей таблицы подстановки: укажем наименования столбцов, в ячейки D9:D16 введем процентные ставки (входы в нашу таблицу подстановки будут размещаться слева в строках), а в ячейку Е8 введем формулу расчета будущего значения единой суммы вклада. Затем выполним необходимые действия по инициализации средства Таблица подстановки и внесения в соответствующее поле подстановки по строкам значения адреса ячейки с процентной ставкой.

Иллюстрация окна Excel после задания параметров для таблицы подстановки, а также контрольные значения искомых результатов представлены на рис. 4.3.

Проекты - Инвестиционный портал Москвы

Рис. 4.3. Фрагмент окна Excel с заполненными полями таблицы подстановки

После подтверждения в диалоговом окне заданных параметров таблицы подстановки в диапазоне ячеек Е9:Е16 автоматически появятся результаты, полностью совпадающие с контрольными значениями.

Из результатов следует, что годовые ставки менее 13% не обеспечивают рост вклада до требуемой величины, равной 160 000 р.

При ставке 13% значение вклада вырастет до 161 146,22р., а ставка 13,5% обеспечивает рост вклада до 165 093,27р.

Определение будущей стоимости на основе переменной процентной ставки

Задача 1.

Постановка задачи.

По облигации номиналом 50 000 руб., выпущенной на 6 лет, предусмотрен следующий порядок начисления процентов: в первый год – 10%, в следующие два года – 20%, в оставшиеся три года – 25%.

Определить будущую стоимость облигации с учетом переменной процентной ставки.

Алгоритм решения задачи.

Поскольку процентная ставка меняется со временем, но является постоянной на протяжении каждого из периодов одинаковой продолжительности, то для расчета будущего значения инвестиции по сложной процентной ставке следует воспользоваться функцией БЗРАСПИС (первичное; план).

Проекты - Инвестиционный портал Москвы Иллюстрация решения задачи представлена на рис. 4.4.

Рис. 4.4. Окно функции БЗРАСПИС с данными о будущей стоимости облигации

Результат решения задачи – 154 687,50 р. может быть найден и при явной записи функции БЗРАСПИС. Массив процентных ставок в этом случае следует ввести в фигурных скобках:

Про бизнес:  Контрольная работа: Контрольная по инвестициям вариант 1 (решение задач 2, 3, 12) -

=БЗРАСПИС(50 000; {0,1; 0,2; 0,2; 0,25; 0,25; 0,25}) = 154687,50

Для вычислений будущей стоимости функция БЗРАСПИС использует следующую формулу:

Проекты - Инвестиционный портал Москвы (4.5),

где: Бзраспис – будущая стоимость инвестиции при переменной процентной ставке;

Пс – текущая стоимость инвестиции;

Кпер – общее число периодов;

Ставкаi – процентная ставка в i-й период.

Расчеты по указанной формуле дают тот же результат:

Проекты - Инвестиционный портал Москвы

Задача 2.

Постановка задачи.

По облигации, выпущенной на 6 лет, предусмотрен порядок начисления процентов, приведенный в задаче 1. Рассчитать номинал облигации, если известно, что ее будущая стоимость составила 154 687,50 руб.

Алгоритм решения задачи.

Для решения предложенной задачи воспользуемся аппаратом подбора параметра (из меню команды Сервис).

Проекты - Инвестиционный портал Москвы Пусть исходные данные задачи введены в соответствие с рис. 4.4: в ячейках В4:В9 набраны процентные ставки; ячейка В3 предназначена для хранения значения номинала облигации; в ячейку В10 введена формула =БЗРАСПИС(B3;B4:B9).

Инициируем процедуру подбора параметра (из меню команды Сервис) и заполним диалоговое окно в соответствие с данными, представленными на рис. 4.5.

После подтверждения ввода данных в результате подбора параметра в ячейке В3 получим значение номинала облигации – 50 000 р.

Задания для самостоятельной работы

1. В банк на депозит внесена сумма 30 тыс. руб. Срок депозита 2 года, годовая ставка – 12%. Начисление процентов производится ежеквартально. Определить величину депозита в конце срока.

2. Существует два варианта денежных вкладов по 50 тыс. руб. в течение трех лет: в начале каждого года под 19% годовых или в конце каждого года под 27% годовых. Определить наиболее предпочтительный вариант.

3. Два клиента банка в течение нескольких лет вносят одинаковые фиксированные денежные суммы под 14% годовых. Один клиент делает вклад в начале каждого квартала, другой – в конце каждого месяца. Определить размеры накопленных клиентами к концу пятого года сумм, если общая сумма взносов каждого из них за год равнялась 12 тыс. руб.

4. Определить величину вклада, если сумма размером 7 тыс. руб. помещена в банк под 11% годовых на 28 месяцев, а проценты начисляются ежеквартально.

5. По вкладу размером 3 тыс. руб. начисляется 13% годовых. Определить сумму вклада через 2 года, если проценты начисляются ежемесячно.

6. В начале каждого месяца на счет в банке вносится 1 тыс. руб. Определить накопленную за 3 года сумму вклада при ставке процента 13,5% годовых.

7. Банк принимает вклад на срок 3 месяца под 15% годовых или на 6 месяцев под 17% годовых. Как выгоднее вкладывать деньги на полгода: дважды на 3 месяца или один раз на 6 месяцев?

8. Выдан кредит в сумме 500 тыс. руб. на срок с 15 января по 15 марта текущего года под 15% годовых. Рассчитать сумму погасительного платежа.

9. Рассчитать будущую стоимость облигации номиналом 100 тыс. руб., выпущенной на 4 года, если предусмотрен следующий порядок начисления процентов: в первый год – 12,5%, в следующие два года – 14%, в последний год – 17% годовых.

10. Ожидается, что будущая стоимость инвестиции размером 150 тыс. руб. к концу четвертого года составит 300 тыс. руб. При этом за первый год доходность составит 15%, за второй – 17%, за четвертый – 23%. Рассчитать доходность инвестиции за третий год, используя аппарат подбора параметра.

11. Ставка банка по валютным вкладам на начало года составляет 10% годовых, начисляемых раз в квартал. Первоначальная сумма вклада 500 у.е. В течение года, в начале последующих кварталов, ожидается снижение ставки от первоначального размера на 2, 3 и 5 процентов соответственно. Определить величину вклада на начало следующего года.

12. Корпорация планирует ежеквартально в течение 8-ми лет делать отчисления по 2 000 руб. для создания фонда выкупа своих облигаций. Средства помещаются в банк под 10% годовых. Какая сумма будет накоплена к концу срока операции?

13. Клиент внес в банк вклад на сумму 5 тыс. руб. сроком на один год. Процентная ставка по вкладу в первом квартале составила 12% годовых, в середине второго квартала понизилась до 9%, в начале четвертого квартала снова возросла до 12% годовых. Какую сумму клиент получит в конце года?

14. Если Вы занимаете 30 000 рублей на два года под 8% годовых, то сколько всего денег Вы должны возвратить?

15. Если начальный баланс на счете 6 000 рублей и ежемесячный взнос 500 рублей (в конце каждого месяца), то сколько можно накопить за три года при ставке 0,75% в месяц?

16. Имеется возможность приобретения недвижимости, выплатив строго фиксированную сумму 1 500 000 руб. равномерными авансовыми месячными платежами по 15 000 руб. в течение некоторого периода. В дальнейшем, через 5 лет, недвижимость предполагается продать. Какой на этот момент должна быть ее цена, если планируется за весь срок получить доход, равный 1% в месяц?

17. Финансовая компания создает фонд для погашения обязательств путем помещения в банк суммы в 60 000 руб., с последующим ежегодным пополнением суммами по 10 000 руб. Ставка по депозиту равна 12% годовых. Какова будет величина фонда к концу 6-го года?

Определение текущей стоимости

Часто в расчетах используется понятие текущей стоимости будущих доходов и расходов, связанное с концепцией временной стоимости денег. Согласно этой концепции платежи, осуществленные в различные моменты времени, можно сопоставлять (сравнивать, складывать, вычитать) лишь после приведения их к одному временному моменту.

Текущая стоимость получается как результат приведения будущих доходов и расходов к начальному периоду времени. Функции Excel, относящиеся к данной теме – ПС (ставка; кпер; плт; бс; тип), ЧПС (ставка; значения), ЧИСТНЗ (ставка; значения; даты).

Функция ПС используется, если денежный поток представлен в виде серии равных платежей, осуществляемых через равные промежутки времени.

Функция ЧПС применяется, если денежные потоки представлены в виде платежей произвольной величины, осуществляемые через равные промежутки времени.

Функция ЧИСТНЗ применяется, если денежные потоки представлены в виде платежей произвольной величины, осуществляемых за любые промежутки времени.

Задача 1.

Постановка задачи.

Фирме требуется 500 тыс. руб. через три года. Определить, какую сумму необходимо внести фирме сейчас, чтобы к концу третьего года вклад увеличился до 500 тыс. руб., если процентная ставка составляет 12% годовых.

Алгоритм решения задачи.

Для расчета суммы текущего вклада зададим исходные данные в виде таблицы. При вводе формулы вызовем функцию ПС и в полях ее панели укажем адреса требуемых параметров (рис. 4.6). В результате вычислений получим отрицательное значение, так как указанную сумму фирме потребуется внести.

При непосредственном вводе данных получается то же значение вклада:

= ПС (12%; 3; ; 500000) = — 355 890,12 руб.

Проекты - Инвестиционный портал Москвы

Рис. 4.6. Фрагмент окна Excel с панелью функции ПС

Напомним, что расчет текущей стоимости с помощью функции ПС является обратным к определению будущей стоимости с помощью функции БС (см. формулы (4.1) и (4.2)). Расчет производится путем дисконтирования по ставке сложных процентов, используя формулу:

Проекты - Инвестиционный портал Москвы (4.6)

Формула (4.6) дает аналогичный результат решения задачи, но, базируясь на формуле (4.1), не учитывает знак минус для денежных потоков от клиента:

Проекты - Инвестиционный портал Москвы

Вычисления на основе уравнения (4.2) дают полностью правильный результат.

Задача 2.

Постановка задачи.

Клиент заключает с банком договор о выплате ему в течение 5 лет ежегодной ренты в размере 5 тыс. руб. в конце каждого года. Какую сумму необходимо внести клиенту в начале первого года, чтобы обеспечить эту ренту, исходя из годовой процентной ставки 20%?

Алгоритм решения задачи.

Для расчета настоящего объема предполагаемой инвестиции на основе постоянных периодических выплат в размере 5 тыс. руб. в течение 5 лет используется функция ПС. Подставив исходные данные в заданную функцию, получим:

= ПС( 20%; 5; 5000; 0; 0) = -14 953,06 руб.

Знак «минус» означает, что клиент должен вложить 14953,06 руб., чтобы потом получить выплаты.

Расчет текущей стоимости серии будущих постоянных периодических выплат, производимых в конце периода (обычные платежи) и дисконтированных нормой дохода ставка, ведется по формуле:

Проекты - Инвестиционный портал Москвы (4.7),

где: Пс – текущая стоимость серии фиксированных периодических платежей;

Плт – фиксированная периодическая сумма платежа;

Кпер – общее число периодов выплат (поступлений);

Ставка – постоянная процентная ставка.

Вычисления по формуле (4.7) дают то же значение (без учета знака):

Проекты - Инвестиционный портал Москвы

Задача 3.

Постановка задачи.

Пусть инвестиции в проект к концу первого года его реализации составят 20 000 руб. В последующие четыре года ожидаются годовые доходы по проекту: 6 000 руб., 8 200 руб., 12 600 руб., 18 800 руб.

Рассчитать чистую текущую стоимость проекта к началу первого года, если процентная ставка составляет 10% годовых.

Алгоритм решения задачи.

Чистая текущая стоимость проекта для периодических денежных потоков переменной величины рассчитывается с помощью функции ЧПС.

Так как по условию задачи инвестиция в сумме 20 000 руб. вносится к концу первого периода, то это значение следует включить в список аргументов функции ЧПС со знаком «минус» (инвестиционный денежный поток движется «от нас»). Остальные денежные потоки представляют собой доходы, поэтому при вычислениях укажем их со знаком «плюс».

Иллюстрация решения задачи представлена на рис. 4.7.

Чистая текущая стоимость проекта к началу первого года составляет:

= ЧПС (10%; -20000; 6000; 8200; 12600; 18800) = 13 216,93 руб.

Данный результат представляет собой чистую прибыль от вложения 20 тыс. руб. в проект с учетом покрытия всех расходов.

Проекты - Инвестиционный портал Москвы

Рис. 4.7. Фрагмент окна Excel с панелью функции ЧПС

При расчете чистой приведенной стоимости инвестиций с помощью функции ЧПС учитываются периодические платежи переменной величины как суммы ожидаемых расходов и доходов в каждый из периодов, дисконтированные нормой процентной ставки, с использованием следующей формулы:

Проекты - Инвестиционный портал Москвы (4.8),

где: ЧПС – чистая текущая стоимость периодических выплат и поступлений;

Значениеi – суммарный размер i-го денежного потока на конец периода (поступления – со знаком «плюс», выплаты – со знаком «минус»);

Ставка – норма дисконтирования за один период;

n – число периодов движения денежных потоков (суммарное количество выплат и поступлений);

i – номер периода денежного потока.

Аналитический расчет задачи дает аналогичный результат:

Проекты - Инвестиционный портал Москвы

Задача 4.

Постановка задачи.

Инвестор с целью инвестирования рассматривает 2 проекта, рассчитанных на 5 лет. Проекты характеризуются следующими данными:

· по 1-му проекту – начальные инвестиции составляют 550 тыс. руб., ожидаемые доходы за 5 лет соответственно 100, 190, 270, 300 и 350 тыс. руб.;

· по 2-му проекту – начальные инвестиции составляют 650 тыс. руб., ожидаемые доходы за 5 лет соответственно 150, 230, 470, 180 и 320 тыс. руб.

Определить, какой проект является наиболее привлекательным для инвестора при ставке банковского процента – 15% годовых.

Алгоритм решения задачи.

Оценку привлекательности проектов выполним с помощью показателя чистой текущей стоимости (функции ЧПС).

Поскольку оба проекта предусматривают начальные инвестиции, вычтем их из результата, полученного с помощью функции ЧПС. (Начальные инвестиции по проекту не нужно дисконтировать, так как они являются предварительными, уже совершенными к настоящему моменту времени).

Для облегчения анализа полученного решения исходные данные задачи представим в виде таблицы и в соответствующие ячейки введем значения формул с функциями ЧПС (рис. 4.8). В результате вычислений получим, что чистая приведенная стоимость инвестиций во второй проект почти на 22 тыс. руб. выше, чем в первый.

Проекты - Инвестиционный портал Москвы

Проекты - Инвестиционный портал Москвы

Непосредственное задание параметров в формулах расчета, как и вычисления с использованием формулы (4.8), дают те же результаты.

Для первого проекта:

= ЧПС (15%; 100000; 190000; 270000; 300000; 350000) – 550000 = 203 691,03р.

Проекты - Инвестиционный портал Москвы

Для второго проекта:

= ЧПС (15%; 150000; 230000; 470000; 180000; 320000) – 650000 = 225 392,59р.

Проекты - Инвестиционный портал Москвы

Таким образом, второй проект является для инвестора более привлекательным.

В некоторой степени функции ПС и ЧПС похожи. Сравнивая их, можно сделать следующие выводы:

1) в функции ПС периодические выплаты предполагаются одинаковыми, а в функции ЧПС они могут быть различными;

2) в функции ПС платежи и поступления происходят как в конце, так и в начале периода, а в функции ЧПС предполагается, что все выплаты производятся равномерно и всегда в конце периода.

Из последнего вывода следует, что если денежный взнос осуществляется в начале первого периода, то его значение следует исключить из аргументов функции ЧПС и добавить (вычесть, если это затраты) к результату функции ЧПС. Если же взнос приходится на конец первого периода, то его следует задать в виде отрицательного первого аргумента массива значений функции ЧПС.

Примечание.

Нельзя непосредственно оценивать эффективность, например, с помощью функции ЧПС, нескольких инвестиционных проектов, имеющих разную продолжительность. Предполагая, что допускается реинвестирование, необходимо свести полученные результаты чистой текущей стоимости по каждому из них к единому по продолжительности периоду. С этой целью можно воспользоваться специальными методами.

Метод цепного повтора предполагает оценку эффективности проектов в рамках общего одинакового срока их действия. Находится наименьшее общее кратное продолжительности проектов и рассчитывается, сколько раз каждый из них должен повториться. Затем определяется с учетом повторов и реинвестирования чистая приведенная стоимость каждого из проектов, которая и сравнивается. Большему значению соответствует более привлекательный проект.

Суммарная чистая приведенная стоимость повторяющегося потока для каждого из проектов находится по формуле:

Проекты - Инвестиционный портал Москвы(4.9),

где: ЧПС(n) – чистая приведенная эффективность исходного проекта, найденная с учетом предварительных инвестиций;

n – длительность исходного проекта;

i – число повторов исходного проекта;

Ставка – норма дисконтирования за один период.

Метод бесконечного цепного повтора предполагает, что каждый из проектов может быть реализован неограниченное число раз.

Проекты - Инвестиционный портал Москвы(4.10)

Задача 5.

Постановка задачи.

Сравнить инвестиционную привлекательность двух проектов. Цена капитала составляет 10%. Предварительные инвестиции в первый проект составляют 100 млн. руб., во второй – 105 млн. руб. Продолжительность первого проекта – 2 года; доходы по годам – 50 и 70 млн. руб. соответственно. Продолжительность второго проекта – 3 года; доходы по годам – 34, 40 и 60 млн. руб. соответственно.

Алгоритм решения задачи.

Для решения задачи предварительно рассчитаем чистую приведенную стоимость проектов при их однократном выполнении, воспользовавшись функцией ЧПС и вычтя предварительные инвестиции. Затем, принимая во внимание разную продолжительность проектов, рассчитаем значения эффективности проектов по формулам (4.9) и (4.10).

При однократном выполнении проектов предпочтительным выходит второй проект (ЧПС1 = 3,306; ЧПС2 = 4,046). Но такой вывод преждевременный (рис. 4.9).

Расчет эффективности проектов за 6 лет, а также при их бесконечном повторении дает результат полностью противоположный – более привлекательным является первый проект:

ЧПС1(2,3) = 8,296 ЧПС2(3,2) = 7,086

ЧПС1(2,∞) = 19,048 ЧПС2(3, ∞) = 16,269

Задача 6.

Постановка задачи.

Определить чистую текущую стоимость по проекту на 5.04.2005 г. при ставке дисконтирования 8%, если затраты по нему на 5.08.2005 г. составят 90 млн. руб., а ожидаемые доходы в течение следующих месяцев будут:

10 млн. руб. на 10.01.2006 г.;

20 млн. руб. на 1.03.2006 г.;

30 млн. руб. на 15.04.2006 г.;

40 млн. руб. на 25.07.2006 г.

Проекты - Инвестиционный портал Москвы

Рис. 4.9. Иллюстрация оценки эффективности инвестиционных проектов разной продолжительности

Алгоритм решения задачи.

Поскольку в данном случае имеем дело с нерегулярными переменными расходами и доходами, для расчета чистой текущей стоимости по проекту на 5.04.2005 г. необходимо применить функцию ЧИСТНЗ.

Расчет чистой текущей стоимости нерегулярных переменных расходов и доходов с помощью функции ЧИСТНЗ осуществляется по формуле:

Проекты - Инвестиционный портал Москвы (4.11),

где: Чистнз – чистая текущая стоимость нерегулярных переменных выплат и поступлений;

Ставка – норма дисконтирования;

d1 – дата 0-й операции (начальная дата);

di дата i-й операции;

Значениеiсуммарное значение i–й операции;

n – количество выплат и поступлений.

Для нахождения решения задачи предварительно построим таблицу с исходными данными. Рассчитаем рядом в столбце число дней, прошедших от начальной даты до соответствующей выплаты. Затем найдем требуемый результат – с помощью функции ЧИСТНЗ и по формуле (4.11). Получим значение – 4 267 559 руб. 31 коп. Иллюстрация решения приведена на рис. 4.10.

Непосредственный ввод параметров в ЧИСТНЗ дает тот же результат:

=ЧИСТНЗ (8%;{0;-90;10;20;30;40}; B4:B8) = 4,26755931 млн. руб.

Вычисление решения задачи по формуле (4.11):

Проекты - Инвестиционный портал Москвы

Примечания.

1. При явной форме записи функции ЧИСТНЗ нельзя непосредственно указывать в каком бы то ни было допустимом формате массив дат в качестве ее параметров. Обязательно следует ссылаться на ячейки, где эти даты приведены.

2. Аналитические вычисления по формулам следует выполнять на листе Excel (а не на калькуляторе).

Проекты - Инвестиционный портал Москвы

Рис. 4.10. Иллюстрация примера использования функции ЧИСТНЗ

Задания для самостоятельной работы

Показатели Проект 1 Проект 2
Инвестиции
Доходы:    
1 год
2 год
3 год

1. Определить, какой из двух представленных проектов является наиболее привлекательным для инвестора. Ставка банковского процента составляет 13% годовых. Другие данные о проектах приведены в таблице.

2. Определить чистую текущую стоимость проекта, если ставка дисконтирования равна 12%. Проект требует начальных инвестиций в размере 5 млн. руб. Предполагается, что в конце 1 года убыток составит 900 тыс. руб., а в следующие 3 года ожидается доход в размере: 1 500 тыс. руб., 3 200 тыс. руб. и 3 800 тыс. руб. соответственно.

Рассчитать также чистую текущую стоимость проекта при условии, что убыток в конце 1 года будет 1 100 тыс. руб.

3. Дать заключение по инвестиционному проекту для 5-ти регионов, если известно, что:

· проект рассчитан на 5 лет;

· ставка дисконтирования по 1-му региону составляет 5%, по 2-му – 6%, по 3-му – 7%, по 4-му – 8%, по 5-му – 9%.

· Другие данные о проекте приведены в таблице.

Указания.

Задачу следует решать, используя средство Таблица подстановки из меню команды Данные. Результаты представить в графическом виде.

4. В инвестиционную компанию для рассмотрения поступили два различных по продолжительности инвестиционных проекта. Предполагаемые данные о проектах приведены в таблице. Необходимо:

· сравнить проекты и выбрать наиболее эффективный из них;

· проанализировать проекты при одинаковых объемах инвестируемых средств.

Проект 1 Проект 2
Ставка дисконтирования 9% Ставка дисконтирования 11%
Объем инвестиций 120 тыс. руб. Объем инвестиций 100 тыс. руб.
Годы: Денежный поток (тыс. руб.) Годы: Денежный поток (тыс. руб.)
   
   

5. Рассматриваются два варианта покупки недвижимости. Первый вариант предполагает единовременную оплату в размере 700 тыс. руб. Второй вариант рассчитан на ежемесячную оплату по 9 тыс. руб. в течение 13 лет.

· Определить, какой вариант является более выгодным, если ставка процента равна: а) 10% годовых; б) 13% годовых.

· Рассчитать сумму ежемесячных взносов при ставке 10% годовых, чтобы второй вариант являлся более предпочтительным.

6. Определить текущую стоимость обязательных ежеквартальных платежей размером 80 тыс. руб. в течение 7 лет, если процентная ставка составляет 15% годовых.

7. Рассчитать суммы, которые необходимо положить на депозит для того, чтобы через 6 лет получить 10 млн. руб. при различных вариантах начисления процентов: ежемесячном, ежеквартальном, полугодовом и годовом. Процентная ставка – 11% годовых.

8. Предприниматель получил в банке кредит под 12% годовых. Какова текущая стоимость кредита, если предприниматель должен в течение 7 лет перечислять в банк по 253 000 руб. ежегодно?

9. Рассчитать чистую текущую стоимость проекта, если:

· к концу первого года его инвестиции составят 34 тыс. руб., а ожидаемые доходы в последующие годы соответственно будут: 5 тыс. руб., 17 тыс. руб. и 25 тыс. руб.; годовая учетная ставка – 12%;

· решить задачу с теми же условиями, но с учетом предварительной инвестиции в проект 10 тыс. руб.;

· проанализировать получаемую чистую текущую стоимость проекта при различных первоначальных объемах инвестиций и разных процентных ставках.

10. Для приобретения квартиры молодая семья планирует в дополнение к собственным накоплениям в размере $12 000 взять в банке ипотечный кредит сроком на 20 лет под 11,5% годовых. Ежемесячно семья может выплачивать по кредиту не более $700.

· На какой кредит может рассчитывать семья? Какой может быть стоимость приобретаемой квартиры?

· Какой может быть стоимость приобретаемой квартиры, если взять в банке кредит с другими условиями: а) на 10 лет под 10,5% годовых; б) на 15 лет под 11% годовых?

· Используя команду Таблица подстановки, рассчитать возможную стоимость приобретаемой квартиры: а) при различных размерах собственных накоплений и разных сроках действия кредита; б) при различных ежемесячных платежах по кредиту и разных сроках его действия.

11. У Вас на депозитном счету 10

§

Проекты - Инвестиционный портал Москвы

Проекты - Инвестиционный портал Москвы
Мы поможем в написании ваших работ!

ЗНАЕТЕ ЛИ ВЫ?

Формат Назначение
ДАТАКУПОНПОСЛЕ (дата_согл;
дата_вступл_в_силу;
частота; базис)
Возвращает число, представляющее дату следующего купона от даты соглашения.
ДАТАКУПОНДО (дата_согл;
дата_вступл_в_силу;
частота; базис)
Возвращает число, представляющее дату предыдущего купона до даты соглашения.
ДЛИТ (дата_согл;
дата_вступл_в_силу; купон;
доход; частота; базис)
Рассчитывает ежегодную продолжительность действия ценных бумаг, по которым осуществляются периодическая выплата процентов.
ДНЕЙКУПОН (дата_согл;
дата_вступл_в_силу; частота; базис)
Возвращает число дней в периоде купона, который содержит дату расчета.
ДНЕЙКУПОНДО (дата_согл;
дата_вступление_в_силу;
частота; базис)
Возвращает количество дней от начала действия купона до даты соглашения.
ДНЕЙКУПОНПОСЛЕ
(дата_согл; дата_вступл_в_силу;
частота; базис)
Возвращает число дней от даты расчета до срока следующего купона.
ДОХОД (дата_согл;
дата_вступл_в_силу; ставка;
цена; погашение; частота; базис)
Возвращает доходность ценных бумаг (облигаций), по которым производятся периодические выплаты процентов.
ДОХОДКЧЕК (дата_согл;
дата_вступл_в_силу; цена )
Возвращает ставку годового дохода по ценным бумагам краткосрочного действия (доходность по казначейскому чеку или векселю).
ДОХОДПЕРВНЕРЕГ
(дата_согл; дата_вступл_в_силу;
дата_выпуска; первый_купон;
ставка; цена; погашение;
частота; базис)
Возвращает доход по ценным бумагам с нерегулярным (коротким или длинным) первым периодом.
ДОХОДПОГАШ (дата_согл;
дата_вступл_в_силу;
дата_выпуска; ставка; цена;
базис)
Возвращает годовую доходность ценных бумаг, по которым проценты выплачиваются при наступлении срока погашения.
ДОХОДПОСЛНЕРЕГ
(дата_согл; дата_вступл_в_силу;
последняя_выплата; ставка;
цена; погашение; частота; базис)
Возвращает доход по ценным бумагам с нерегулярным (коротким или длинным) последним периодом.
ДОХОДСКИДКА (дата_согл;
дата_вступл_в_силу; цена;
погашение; базис)
Возвращает годовую доходность по ценным бумагам, на которые сделана скидка.
ИНОРМА (дата_согл;
дата_вступл_в_силу;
инвестиция; погашение; базис)
Возвращает процентную ставку для полностью инвестированных ценных бумаг.
МДЛИТ(дата_согл;
дата_вступл_в_силу; купон;
доход; частота; базис)
Возвращает модифицированную продолжительность Макалея для ценных бумаг с предполагаемой номинальной стоимостью 100 руб., включая поправку, связанную с рыночным доходом и ежегодными выплатами по купонам.
НАКОПДОХОД (дата_выпуска;
первый_доход; дата_согл;
ставка; номинал; частота; базис)
Возвращает накопленный процент по ценным бумагам с периодической выплатой процентов.
НАКОПДОХОДПОГАШ
(дата_выпуска; дата_согл;
ставка; номинал; базис)
Возвращает накопленный процент по ценным бумагам, процент по которым выплачивается в срок погашения.
ПОЛУЧЕНО (дата_согл;
дата_вступл_в_силу;
инвестиция; скидка; базис)
Возвращает наращенную сумму, полученную к сроку погашения полностью обеспеченных ценных бумаг.
РАВНОКЧЕК (дата_согл;
дата_вступл_в_силу; скидка )
Возвращает эквивалентный облигации доход по казначейскому векселю.
СКИДКА (дата_согл;
дата_вступл_в_силу; цена;
погашение; базис)
Возвращает ставку дисконтирования для ценных бумаг.
ЦЕНА (дата_согл;
дата_вступл_в_силу; ставка;
доход; погашение; частота;
базис)
Возвращает цену за 100 рублей номинальной стоимости ценных бумаг, по которым выплачивается периодический процент.
ЦЕНАКЧЕК (дата_согл;
дата_вступл_в_силу; скидка )
Возвращает цену на 100 руб. номинальной стоимости для бумаг краткосрочного действия (казначейского чека или векселя).
ЦЕНАПЕРВНЕРЕГ
(дата_согл; дата_вступл_в_силу;
дата_выпуска; первый_купон; ставка; доход; погашение;
частота; базис)
Возвращает цену за 100 рублей номинальной стоимости ценных бумаг для нерегулярного (короткого или длинного) первого периода купонных выплат.
ЦЕНАПОГАШ (дата_согл;
дата_вступл_в_силу;
дата_выпуска; ставка;
доходность; базис)
Возвращает цену за 100 рублей номинальной стоимости ценных бумаг, по которым процент выплачивается в срок погашения (в срок вступления в силу одновременно с выкупом).
ЦЕНАПОСЛНЕРЕГ
(дата_согл; дата_вступл_в_силу;
последняя_выплата; ставка;
доход; погашение; частота;
базис)
Возвращает цену за 100 рублей нарицательной стоимости ценных бумаг для нерегулярного (короткого или длинного) последнего периода купона.
ЦЕНАСКИДКА (дата_согл;
дата_вступл_в_силу;
скидка; погашение; базис)
Возвращает цену за 100 рублей номинальной стоимости ценных бумаг, на которые сделана скидка вместо выплаты процентов.
ЧИСЛКУПОН (дата_согл;
дата_вступл_в_силу; частота; базис)
Возвращает количество купонов, которые могут быть оплачены между датой соглашения и сроком вступления в силу, округляемое до ближайшего целого купона.
Про бизнес:  Простые показатели оценки эффективности инвестиционных проектов

Таблица 4.5.

§

Аргумент Назначение аргумента
БазисИспользуемый способ вычисления дня.
Дата_вступл_в_силуДата погашения ценной бумаги.
Дата_выпускаДата выпуска ценных бумаг.
Дата_соглДата приобретения ценной бумаги, дата инвестиций в ценные бумаги (более поздняя, чем дата выпуска).
Доход, доходностьГодовой доход по ценным бумагам.
ИнвестицияОбъем инвестиции в ценные бумаги (цена приобретения).
КупонГодовая ставка процента для купонов по ценным бумагам.
НоминалНоминальная стоимость ценной бумаги (по умолчанию – 1000 руб.).
Первый_доходДата окончания первого периода (дата первой выплаты процентов по ценной бумаге).
Первый_купонДата первого купона для ценных бумаг в числовом формате.
ПогашениеВыкупная стоимость ценных бумаг за 100 руб. номинальной стоимости.
Последняя_выплатаДата последнего купона для ценных бумаг (последней выплаты процентов) .
СкидкаСкидка на казначейский вексель, учетная ставка в процентах к цене погашения.
СтавкаГодовая ставка процента на момент выпуска ценных бумаг.
ЦенаЦена ценных бумаг за 100 руб. номинальной стоимости.
ЧастотаКоличество выплат по купонам за год.

Примечания.

1) Аргумент Частота (Периодичность) задается как число, принимающее следующие значения в зависимости от количества выплат по купонам за год:

1 – один раз в год (ежегодная выплата);

2 – два раза в год (полугодовая выплата);

4 – четыре раза в год (ежеквартальная выплата).

2) Аргумент Базис не является обязательным, однако играет важную роль, поскольку влияет на точность вычислений. В зависимости от способа вычисления временного периода аргумент Базис может принимать следующие значения:

0 – US(NASD) – американский стандарт, месяц равен 30, а год – 360 дням; принимается по умолчанию;

1 – фактический/фактический – фактическая длина месяца и года;

2 – фактический/360 – фактическая длина месяца, год равен 360 дням;

3 – фактический/365 – фактическая длина месяца, год равен 365 дням;

4 – европейский 30/360 – европейский стандарт, длина месяца равна 30 дням, длина года принимается 360 дней.

Следует отметить, что все даты должны быть выражены в числовом формате. Для этих целей служит функция ДАТА (год; месяц; день), которая преобразует заданную дату в числовой формат или, если дата задана текстом, то функция ДАТАЗНАЧ (дата_как_текст). Кроме того, Excel предоставляет возможность автоматически преобразовать дату в числовой формат, если в рассматриваемых функциях используется ссылка на ячейку, в которой содержится дата. Например, дату 3 января 2006 г. следует вводить в числовом формате как 38720.

Технология применения финансовых функций для анализа ценных бумаг

Задача 1.

Постановка задачи.

Рассматривается возможность приобретения облигаций трех типов, каждая из которых с номиналом в 100 руб. и сроком погашения 9.10.2007 г. Курсовая стоимость этих облигаций на дату 25.07.2005 г. составила соответственно 90, 80 и 85 руб.

Годовая процентная ставка по купонам (размер купонных выплат) составляет:

для первой облигации 8 % при полугодовой периодичности выплат;

для второй облигации – 5 % при ежеквартальной периодичности выплат;

для третьей облигации – 10 % с выплатой 1 раз в год.

Расчеты ведутся в базисе фактический/фактический.

Провести анализ эффективности вложений в покупку этих облигаций, если требуемая норма доходности составляет 15% .

Алгоритм решения задачи.

Чтобы оценить эффективность вложений в покупку каждой из облигаций, рассчитаем их годовую доходность, используя функцию ДОХОД:

ДОХОД (дата_согл; дата_вступл_в_силу; ставка; цена; погашение; частота; базис)

Для решения задачи построим на листе Excel таблицу, в ячейки которой введем исходные данные и формулы расчета требуемых величин (рис. 4.27).

Выполним также расчет доходности, непосредственно задавая значения аргументов в функции ДОХОД.

Проекты - Инвестиционный портал Москвы

Рис. 4.27. Применение функции ДОХОД для оценки доходности облигаций

Аргументы, содержащие даты, введем с помощью функции ДАТА (можно также указывать ссылки на ячейки, содержащие даты).

Для облигации первого типа:

=ДОХОД (ДАТА(2005;7;25);ДАТА(2007;10;9);8%;90;100;2;1)= 13,36%

Для облигации второго типа:

=ДОХОД (ДАТА(2005;7;25);ДАТА(2007;10;9);5%;80;100;4;1)= 15,93%

Для облигации третьего типа:

=ДОХОД (ДАТА(2005;7;25);ДАТА(2007;10;9);10%;85;100;1;1)= 18,83%

Результаты, полученные различными способами, совпадают.

Доходность по второй и третьей облигациям (15,93% и 18,83% соответственно) выше заданной нормы (15%), а по первой облигации (13,36%) – ниже. Следовательно, целесообразно покупать облигации второго и третьего типов.

Задача 2.

Постановка задачи.

Коммерческий банк предлагает свои сберегательные сертификаты номиналом 100 000 руб. сроком на 8 месяцев. Дата соглашения – 10.01.2005 г. Цена продажи составляет 85 000 руб. Способ вычисления дня – фактический/360. Необходимо определить доход за этот период.

Алгоритм решения задачи.

Для вычисления доходности данной финансовой операции, возвращающейся в виде годовой ставки, рассчитанной по простым процентам, используем функцию ИНОРМА, которая задается следующим образом:

ИНОРМА (дата_согл; дата_вступл_в_силу; инвестиция; погашение; базис)

Исходные данные задачи представим в виде таблицы. В соответствующую ячейку введем формулу, обеспечивающую вычисление доходности сберегательного сертификата (рис. 4.28).

Для проверки правильности результата в функцию ИНОРМА введем значения аргументов в непосредственном виде:

= ИНОРМА (ДАТА(2005;1;10);ДАТА(2005;9;10);85000;100000;2) = 26,14%

Результаты вычислений совпадают.

Задача 3.

Постановка задачи.

Облигация номиналом в 10 000 руб. и сроком погашения 20.07.2008 г. приобретена 5.05.2005 г. Выплаты по купонам осуществляются каждые полгода при способе вычисления дня – фактический/365. Необходимо определить:

· количество предстоящих купонных выплат;

· дату предшествующей купонной выплаты;

· дату следующей купонной выплаты;

· длительность купонного периода;

Проекты - Инвестиционный портал Москвы

Рис. 4.28. Иллюстрация применения функции ИНОРМА для оценки доходности сертификатов

· количество дней от начала действия периода до даты соглашения;

· количество дней от даты соглашения до даты следующего периода.

Алгоритм решения задачи.

Данная задача решается с применением специальных функций, предназначенных для определения различных технических характеристик купонов облигаций. К функциям данной группы относятся:

ДНЕЙКУПОНДО (дата_согл; дата_вступление_в_силу; частота; базис)

ДНЕЙКУПОН (дата_согл; дата_вступл_в_силу; частота; базис)

ДНЕЙКУПОНПОСЛЕ (дата_согл; дата_вступл_в_силу; частота; базис)

ДАТАКУПОНДО (дата_согл; дата_вступл_в_силу; частота; базис)

ДАТАКУПОНПОСЛЕ (дата_согл; дата_вступл_в_силу; частота; базис)

ЧИСЛКУПОН (дата_согл; дата_вступл_в_силу; частота; базис)

Исходные данные задачи введем в таблицу и рассчитаем требуемые показатели. После получения результатов для ячеек с датами зададим формат представления информации в виде даты (после вычислений получается числовой формат).

Иллюстрация решения задачи показана на рис. 4.29, где в примечаниях к соответствующим ячейкам показаны формулы записи встроенных функций, позволяющих решить поставленную задачу.

На рис. 4.30 приведена панель функции ДАТАКУПОНПОСЛЕ. Другие функции группы имеют аналогичные по структуре панели.

Проекты - Инвестиционный портал Москвы

Рис. 4.29. Фрагмент экрана при расчете параметров купонных выплат

Проекты - Инвестиционный портал Москвы

Рис. 4.30. Фрагмент экрана с панелью функции ДАТАКУПОНПОСЛЕ

Задача 4.

Постановка задачи.

Вексель выдан 12.07.2005 г. с датой погашения 25.12.2005 г. Цена векселя составляет 200 тыс. руб., а выкупная цена – 250 тыс. руб. При расчетах используется базис фактический/фактический. Необходимо определить величину учетной ставки.

Алгоритм решения задачи.

Определить величину учетной ставки можно с помощью функции СКИДКА:

СКИДКА (дата_согл; дата_вступл_в_силу; цена; погашение; базис)

Представим данные задачи в виде таблицы. В соответствующую ячейку введем формулу, обеспечивающую вычисление учетной ставки. Иллюстрация решения приведена на рис. 4.31.

Для проверки правильности результата в функцию СКИДКА введем значения аргументов в непосредственном виде:

= СКИДКА (ДАТА(2005;7;12); ДАТА (2005;12;25); 200000;250000;1) = 43,98%

Оба результата совпадают.

Проекты - Инвестиционный портал Москвы

Рис. 4.31. Применение функции СКИДКА для вычисления учетной ставки векселя

Функция СКИДКА реализует следующую формулу:

Проекты - Инвестиционный портал Москвы (4.18),

где: Цена – цена ценных бумаг за 100 руб. номинальной стоимости;

Погашение – выкупная стоимость ценных бумаг за 100 руб. номинальной стоимости;

Длительность_года – число дней в году (зависит от выбранного Базиса, см. примечание к п. 4.2.2);

Срок – число дней между датой расчета за ценные бумаги (аргментом дата_согл) и датой их погашения (аргументом дата_вступл_в_силу).

Расчет по формуле (4.18) дает тот же результат:

Проекты - Инвестиционный портал Москвы

Задача 5.

Постановка задачи.

Определить стоимость ценной бумаги номиналом 1 000 руб. На ценную бумагу установлена скидка размером 11,5%. Дата приобретения ценной бумаги – 27 января 2006 г. Дата погашения – 10 января 2007 г. Расчеты выполнить в базисе Европейский/360.

Алгоритм решения задачи.

Определить стоимость ценной бумаги на дату покупки с учетом действующей скидки можно с помощью встроенной функции ЦЕНАСКИДКА, имеющей следующий формат:

=ЦЕНАСКИДКА (дата_согл; дата_вступл_в_силу; скидка; погашение; базис)

Функция при нахождении цены со скидкой реализует вычисления, вытекающие из формулы (4.18):

Проекты - Инвестиционный портал Москвы (4.19)

Используя функцию, найдем решение задачи, иллюстрация которого приведена на рис. 4.32. Как видно, на дату покупки стоимость ценной бумаги номиналом 1 000 руб. равна 890 руб. 43 коп. Различные варианты применения функции, а также формула (4.19) дают один и тот же результат:

Проекты - Инвестиционный портал Москвы

Задания для самостоятельной работы

1. Вексель номиналом 3 млн. руб. выдан 1.02.2006 г. сроком на 4 месяца. Учетная ставка составляет 15% годовых. Определить сумму, которую получит векселедатель, если при расчете используется стандартный базис 30/360.

2. Определить номинал векселя, выданного на 3 месяца при учетной ставке в 13% годовых, если векселедатель получил 17 тыс. руб.

Проекты - Инвестиционный портал Москвы

Рис. 4.32. Иллюстрация использования функции ЦЕНАСКИДКА

3. Владелец векселя, выданного коммерческим банком, получит по нему через 4 года 180 000 руб. Определите, за какую сумму вексель был приобретен, если его доходность составляет 14% годовых.

4. Рассматривается возможность приобретения нескольких облигаций. Облигация № 1 имеет купон 13% годовых с выплатой 1 раз в год и продается по курсу 72,5. Облигация № 2 имеет купон 15% годовых с выплатой 1 раз в год и продается по курсу 65,5. Облигация № 3, имеющая купон 16 % годовых с выплатой 1 раз в год, продается по номиналу. Определите, какую облигацию следует приобрести?

5. Облигация номиналом 500 000 руб. с датой соглашения – 1.06.2005 г. и датой вступления в силу – 25.05.2006 г. имеет купон 7,5 % годовых при полугодовой периодичности выплат. Годовой доход составляет 8,5 %. Способ вычисления дня – фактический/360. Определить размер купонной выплаты и ежегодную продолжительность действия облигации.

6. Сберегательный сертификат коммерческого банка номиналом 200 тыс. руб. и сроком погашения через 6 месяцев был приобретен 12.02.2006 г. Процентная ставка по сертификату равна 30% годовых. Определить величину абсолютного дохода по сертификату на момент погашения при европейском способе начисления дня.

7. Номинальная стоимость обыкновенной акции 300 руб. Курс на вторичном рынке 330 руб. Дивиденды выплачены в размере 160 руб. Определить доходность акции.

8. Облигация номиналом 200 000 руб. и сроком погашения через 10 лет, имеет купон 5 % годовых с выплатой 1 раз в полгода. Облигация приобретена через 3 года после выпуска. Дата выпуска – 20.03.2003 г. Определите цену покупки данной облигации и размер купонной выплаты, если требуемая норма доходности была равна 15 %. Проанализируйте стоимость покупки облигации при разных вариантах норм доходности.

9. Рассматривается возможность приобретения облигации. Срок действия облигации с 15.06.2006 г. по 15.10.2006 г. Требуемая доходность равна 40 % годовых. Определите приемлемую стоимость для приобретения облигации на 20.09.2006 г.

10. Чеки казначейства имеют дату соглашения 14.08.2006 г. и дату погашения 14.12.2006 г. Норма скидки составляет 9%. Определить цену и доход по казначейскому чеку, а также годовой доход по казначейским чекам, эквивалентный доходу по облигациям.

11. На 15 июня текущего года имеется некоторый резерв наличности, равный 10 400 руб., который может быть внесен на депозит сроком на полгода или потрачен на покупку ценных бумаг, дата погашения которых намечена на конец года.

Депозитная ставка – 10,5% годовых. Информация о ценных бумагах приведена в таблице.

  Ценная бумага 1 Ценная бумага 2 Ценная бумага 3
Выкупная цена 100,00р. 200,00р. 500,00р.
Дата соглашения 16 июня 15 июня 16 июня
Дата погашения 17 декабря 19 декабря 15 декабря
Цена продажи со скидкой 95,00р. 189,00р. 472,00р.

Найти скидку, действующую на указанные ценные бумаги, используя базис фактический/фактический. Определить, сколько каких ценных бумаг и на какую сумму может быть приобретено.

Рассчитать чистую прибыль в денежном эквиваленте для каждого из 4-х вариантов. Найти наиболее выгодный вариант вложения денег, обеспечивающий максимальную прибыль на каждый вложенный рубль.

§

Формат Назначение
АМОРУВ (стоимость;
дата_приобр;
первый_период;
остаточ_стоимость; период;
ставка; базис)
Возвращает при использовании французской системы бухгалтерского учета величину амортизации для каждого периода без учета зависимости коэффициента амортизации от периода амортизации актива.
АМОРУМ (стоимость;
дата_приобр; первый_период; остаточ_стоимость; период;
ставка; базис)
 
Возвращает при использовании французской системы бухгалтерского учета величину амортизации для каждого периода с учетом зависимости коэффициента амортизации от периода амортизации актива.
АПЛ (нач_стоимость;
остаточ_стоимость;
время_эксплуат)
Возвращает величину непосредственной амортизации актива за один период, рассчитанную линейным методом.
АСЧ (нач_стоимость;
остаточ_стоимость;
время_эксплуат; период)
Возвращает величину амортизации актива за данный период, рассчитанную методом «суммы (годовых) чисел».
ДДОБ (нач_стоимость;
остаточ_стоимость;
время_эксплуат; период;
коэффициент)
Возвращает значение амортизации актива за данный период, используя метод двойного уменьшения остатка или иной явно указанный метод.
ПУО (нач_стоимость;
остаточ_стоимость;
время_эксплуат; нач_период; кон_период; коэффициент; без_переключения)
Возвращает величину амортизации актива для любого выбранного периода, в том числе для частичных периодов, с использованием метода двойного уменьшения остатка или иного указанного метода.
ФУО (нач_стоимость;
остаточ_стоимость;
время_эксплуат;
период; месяцы)
Возвращает величину амортизации актива для заданного периода, рассчитанную методом фиксированного уменьшения остатка.

Таблица 4.7.

Описание аргументов функций

Аргумент Назначение аргумента
БазисИспользуемый способ вычисления дня.
Без_переключенияЛогическое значение; определяет, следует ли использовать линейную амортизацию в случае, когда амортизация превышает величину, рассчитанную методом снижающегося остатка.
Время_эксплуат,
время_эксплуатации
Период амортизации, количество периодов, за которые собственность амортизируется.
Дата_приобрДата приобретения актива
Кон_периодНомер последнего периода, включенного в вычисления.
КоэффициентПроцентная ставка снижающегося остатка (по умолчанию – 2).
МесяцыКоличество месяцев в первом году эксплуатации (по умолчанию – 12).
Нач_периодНомер первого периода, включенного в вычисления.
Остаточ_стоимость, ост_стоимостьОстаточная стоимость актива в конце периода амортизации.
Первый_доходДата окончания первого периода.
Первый_периодДата окончания первого периода.
ПериодПериод амортизации
СтавкаПроцентная ставка за период амортизации.
Стоимость, нач_стоимостьЗатраты на приобретение актива.

Технология применения финансовых функций для расчета амортизационных отчислений

Задача 1.

Постановка задачи.

На балансе организации имеется медицинское оборудование стоимостью 2000 ?. Расчетный срок эксплуатации оборудования – 6 лет. Остаточная стоимость – 100 ?. Рассчитать годовые амортизационные отчисления, учитывая линейный характер износа оборудования.

Алгоритм решения задачи.

Для решения задачи можно воспользоваться функцией АПЛ, как раз предназначенной для этого случая и имеющий формат:

=АПЛ (Нач_стоимость; Ост_стоимость; Время_эксплуатации)

Иллюстрация решения задачи приведена на рис. 4.33.

Проекты - Инвестиционный портал Москвы

Рис. 4.33. Расчет амортизации линейным способом с помощью функции АПЛ

Функция АПЛ реализует формулу:

Проекты - Инвестиционный портал Москвы (4.20)

Расчет по формуле (4,20) дает тот же результат: 316,67 ?.

Задача 2.

Постановка задачи.

Рассчитать амортизационные отчисления для каждого из периодов эксплуатации оборудования, закупленного по цене 485 000 руб. Срок эксплуатации оборудования – 9 лет. Остаточная стоимость – 26 000 руб.

При расчетах использовать способ списания стоимости по сумме чисел лет срока полезного использования.

Алгоритм решения задачи.

Поставленную задачу решим с помощью функции АСЧ. Формат функции:

=АСЧ (Нач_стоимость; Ост_стоимость; Время_эксплуатации; Период)

Функция АСЧ при вычислениях использует формулу:

Проекты - Инвестиционный портал Москвы (4.21)

Расчеты с помощью функции АСЧ и формулы (4.21) дают одинаковые результаты. С каждым годом амортизационные отчисления уменьшаются, и для последнего девятого года они равны 10 200 руб.

Иллюстрация решения представлена на рис. 4.34.

Задача 3.

Постановка задачи.

Рассчитать амортизационные отчисление на оборудование в каждый из периодов его эксплуатации. Оборудование закуплено и введено в эксплуатацию 1 июня 2005 г. Стоимость оборудования – 340 000 руб. Срок эксплуатации – 3 года. Остаточная стоимость – 10 000 руб.

При расчетах использовать способ фиксированного уменьшения остатка.

Рассчитать балансовую стоимость оборудования на начало каждого периода (года эксплуатации).

Представить на графике зависимость балансовой стоимости и амортизационных отчислений от периода эксплуатации.

Алгоритм решения задачи.

Поставленную задачу решим с помощью функции ФУО. Формат функции:

=ФУО (Нач_стоимость; Ост_стоимость; Время_эксплуатации; Период; Месяцы)

Для вычисления амортизации за указанный i-й период функция ФУО использует следующие формулы:

Проекты - Инвестиционный портал Москвы (4.22),

где: ФУОk–амортизация за предшествующий k-й период;

i – период, для которого высчитывается амортизация;

Ставка – фиксированная процентная ставка, округленная до 3-х знаков после запятой, вычисленная по формуле:

Проекты - Инвестиционный портал Москвы (4.23)

Проекты - Инвестиционный портал Москвы

Рис. 4.34. Расчет амортизации по периодам с помощью функции АСЧ

Особым образом вычисляется амортизация за первый и последний периоды (они могут быть неполными, как в нашей задаче).

Для первого периода используется формула:

Проекты - Инвестиционный портал Москвы (4.24)

Для последнего периода применяется формула:

Проекты - Инвестиционный портал Москвы (4.25)

Решение задачи и необходимые пояснения приведены на рис. 4.35.

Проекты - Инвестиционный портал Москвы

Рис. 4.35. Иллюстрация решения задачи с применением функции ФУО

Задача 4.

Постановка задачи.

Организация сдает оборудование в аренду. Для более точного определения ее стоимости необходимо знать величину амортизационных отчислений, определяемых по методу двойного уменьшения остатка.

Переоценка оборудования перед сдачей в аренду определила его стоимость – 40 000 руб. Оставшийся срок эксплуатации – 3 года. Остаточная стоимость – 100 руб.

Рассчитать амортизационные отчисление на оборудование за первый и 365-й день аренды, первый, второй и пятый месяцы, первый год, а также некоторые периоды 2-го и 3-го годов.

Алгоритм решения задачи.

Поставленную задачу можно решить с помощью функций ПУО или ДДОБ, использующих метод двойного уменьшения остатка или иной явно указанный метод.

Функция ПУО возвращает величину амортизации актива для любого выбранного периода, в том числе для частичных и смежных периодов.

Функция ДДОБ возвращает значение амортизации актива за указанный период.

Форматы функций:

=ПУО (Нач_стоимость; Ост_стоимость; Время_эксплуатации; Нач_период;

Кон_период; Коэффициент; Без_переключения)

=ДДОБ (Нач_стоимость; Ост_стоимость; Время_эксплуатации;

Период; Коэффициент)

Описания функций требуют некоторого пояснения.

Аргументы Время_эксплуатации, Нач_период, Кон_период и Период всегда должны быть указаны в одних и тех же единицах.

Аргумент Коэффициент представляет собой процентную ставку снижающегося остатка. Если аргумент не указан (опущен), он полагается равным 2% (метод удвоенного процента со снижающегося остатка). Если нужно использовать другой метод вычисления амортизации, аргумент Коэффициент следует указать явно.

Аргумент Без_переключения представляет собой логическое значение, определяющее, следует ли при необходимости использовать линейную амортизацию. Если аргумент имеет значение ЛОЖЬ (или не задан), происходит автоматическое переключение на метод начисления линейной амортизации, если амортизация больше величины, рассчитанной методом снижающегося остатка. Если его значение ИСТИНА, переключение не происходит никогда.

Иллюстрация решения задачи с отображением введенных формул и полученных результатов приведена на рис. 4.36.

Проекты - Инвестиционный портал Москвы

Рис. 4.36. Применение функций ДДОБ и ПУО для вычисления амортизации

Как видно, для первых периодов амортизационные отчисления, найденные с помощью функций ДДОБ и ПУО совпадают. Совпадения будут до середины срока эксплуатации, когда балансовая стоимость оборудования сравняется с остаточной стоимостью вследствие использования метода двойного уменьшения остатка.

Для последних периодов результаты разные. Функция ПУО перешла на метод начисления линейной амортизации, а функция ДДОБ продолжает вычисления по формуле, которую она реализует:

Проекты - Инвестиционный портал Москвы (4.26)

Задания для самостоятельной работы

1. Приобретен объект основных средств стоимостью 200 000 руб. Срок полезного использования объекта – 5 лет. Используя линейный способ, рассчитать годовые амортизационные отчисления.

2. Приобретенная организацией за 25 000 долларов оргтехника имеет 6-летний срок полезного использования. Остаточная стоимость оргтехники в конце периода эксплуатации не будет превышать 500 долларов.

Применяя способ уменьшаемого остатка, рассчитать величину амортизационных отчислений за первый и второй годы.

Найти балансовую стоимость оргтехники на начало пятого года.

3. Применяя способ списания стоимости по сумме чисел лет срока полезного использования, найти годовые амортизационные отчисления для оборудования стоимостью 54 000 руб. .Срок полезного использования оборудования – 8 лет. Остаточная стоимость – 1 800 руб.

Найти балансовую стоимость оборудования на начало каждого периода его эксплуатации.

4. На интенсивно используемое оборудование фирмы установлен коэффициент ускорения 3. Начальная стоимость оборудования – 125 000 руб. Остаточная стоимость – 5 000 руб. Установленный срок полезного использования – 5 лет.

Рассчитать амортизационные отчисления на оборудование за период со 2-го по 5-й месяц его эксплуатации.

Найти балансовую стоимость оборудования на начало 2-го года.

5. В марте текущего года принят на учет организации объект основных средств первоначальной стоимостью 210 000 руб. Срок полезного использования объекта – 7 лет.

Используя различные способы (линейный и уменьшаемого остатка), рассчитать величину амортизации объекта за все годы его эксплуатации. Определить балансовые стоимости объекта на начало календарных лет.

Результаты представить в графическом виде.

Лабораторная работа № 9.

Расчет Денежных средств на расчетном счете пенсионного фонда.

1. Постановка задачи:

Вы решили заключить договор с пенсионным фондом о дополнительном ежегодном взносе. Вначале каждого года Вы собираетесь вносить определенную сумму и рассчитываете на 11% годовых. Сколько денежных средств накопится на Вашем расчетном счете к пенсионному возрасту?

2. Рекомендации:

Расчет денежных средств на расчетном счете в пенсионном фонде производится с помощью финансовой функции БС().

3. Дополнительные условия:

· расчет осуществите для себя и членов Вашей семьи (несколько строк);

· предусмотрите автоматический расчет количества лет до
пенсионного возраста мужчин и женщин;

· выполните аналогичный расчет с учетом того, что на Вашем
расчетном счете в пенсионном фонде уже есть некоторая сумма.

Имя Дата рождения (чч/мм/гг) Пол Возраст Лет до пенсии БС 1 Начальный вклад БС 2
      =ГОД() … =ЕСЛИ =БС ввести =БС
               

Лабораторная работа № 10.

Выдача и погашение кредита

1. Постановка задачи

Фирма решила взять кредит размером 200000 $ сроком на 5 лет, погашать который (основной долг и проценты) намерена равномерными платежами в конце каждого года. Запросы на финансирование фирма направила в три банка, из которых пришли ответы с соответствующими условиями. Рассчитайте на листе КРЕДИТ согласно условиям реальные суммы, которые получить фирма по кредиту, размер ежегодных выплат. На листе ПОГАШЕНИЕ составьте план погашения кредита по годам.

2. Для решения задачи на листе КРЕДИТ введите или рассчитайте значения следующих столбцов:

· наименование банка;

· сумма кредита;

· процент (от суммы кредита), оставляемый банку как плата за риск и обработку данных;

· плата банку за издержки при оформлении кредита;

· ставка процента, под который банк готов предоставить кредит;

· размер оплаты банку за риск, рассчитанный по формуле;

· сумма, получаемая фирмой за вычетом выплат банку;

· сумма годового платежа по кредиту, включающая погашение основного долга и процентные платежи, выплачиваемые в конце года (рассчитывается с помощью финансовой функции ПЛТ()).

Оформите таблицу: выделите ячейки, предназначенные для ввода данных, голубым цветом, а ячейки с формулами – желтым.

3. Определив, в каком банке выгоднее взять фирме кредит, на втором листе ПОГАШЕНИЕ составьте таблицу погашения, состоящую из следующих столбцов:

· год погашения

· сумма годового платежа, погашающая основной долг, рассчитывается с помощью финансовой функции ОСНПЛАТ());

· сумма по выплачиваемым процентам (рассчитывается с помощью финансовой функции ПЛПРОЦ( ));

· сумма накопленного долга (ОБЩДОХОД( ));

· сумма по накопленным процентам (ОБЩПЛАТ( ));

· сумма остатка основного долга на конец каждого года.

[1]Курсивом набраны необязательные параметры функций.

Оцените статью
Бизнес Болика